Fueling a cleaner combustion

September 18, 2017, King Abdullah University of Science and Technology
The decomposition of DEC was evaluated using a laser beam that passed through a complicated system of mirrors and lenses (bottom) before reaching the shock tube (upper left). Credit: © 2017 KAUST

An additive for conventional fuel comprised of oxygenated organic compounds could help reduce the release of pollutants into the atmosphere during the combustion of fossil fuels. Researchers from KAUST have now established how these potential additives decompose under combustion-relevant conditions.

Selecting a suitable additive for a blend hinges on a good understanding of its kinetic behavior under combustion conditions. Because of their ability to burn cleanly, that contain more than 33% of by mass have recently emerged as prospective additives for conventional fuel blends.

Specifically, diethyl carbonate (DEC), which comprises 40.6% of oxygen by mass, is expected to facilitate the clean combustion of diesel fuels. Also, thanks to its high boiling point, it can reduce the volatility of blended fuels, which is desirable in warm weather to minimize vapor buildup that blocks fuel lines. However, its remains poorly understood.

To fill this knowledge gap, Binod Raj Giri and coworkers have now evaluated the effects of pressure and temperature on the decomposition of DEC. With collaborators from the University of Miskolc, Hungary, the researchers assessed the decomposition kinetics of DEC by monitoring the evolution of ethylene, one of the reaction products, in real time using a tunable CO2 gas laser. "We carefully selected the laser wavelength to minimize interferences from other reaction intermediates," says PhD student, Muhammad AlAbbad, who performed these experiments at the University's low-pressure shock-tube facility.

The researchers combined experiments with theoretical calculations to "provide a detailed and reliable kinetic picture for the decomposition and its products," says Giri.

Giri's team had previously discovered that the carboxylate functional group had a small effect on the decomposition of organic esters called ethyl propionate and ethyl levulinate. "This motivated us to find out whether the same phenomenon would happen for DEC, which bears one more oxygen atom in its carbon skeleton than esters," he says.

The researchers found that the additional oxygen atom destabilized the carbonate by significantly lowering the reaction energy barrier, thereby increasing reactivity.

According to Giri, these findings will shed light into the applicability of biodiesel fuels, which consist of various methyl and ethyl esters, to modern diesel engines and engine hybrids. Also, they will help clarify the blending effect of esters and carbonates with conventional fuels.

Giri's team is currently investigating pathways for glycerol carbonate, which has a higher oxygen content than DEC. "This molecule might be even more attractive than DEC regarding soot reduction and environmental impact," he adds.

Explore further: New model of gasoline combustion developed using experimental data

More information: Mohammed AlAbbad et al, A high temperature kinetic study for the thermal unimolecular decomposition of diethyl carbonate, Chemical Physics Letters (2017). DOI: 10.1016/j.cplett.2017.07.020

Related Stories

Researchers produce biofuel for conventional diesel engines

June 19, 2017

In accordance with an EU directive, conventional automotive diesel is supplemented with 7 percent biodiesel. This proportion is set to rise to ten percent by 2020. However, this presents a significant technical challenge: ...

Synthetic options for the diesel engine

June 23, 2017

Synthetic fuels, such as oxymethylene ether, could prepare Diesel vehicles to play a major role in the drive train mix of tomorrow. Scientists at the TU Darmstadt are carrying out research into the practical viability of ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.