Researchers explore ways that a drug like Avandia can be made safer

September 30, 2017, The Scripps Research Institute
The 'complex' of PPARγ (green) and RXRα (blue) with DNA (orange). Credit: The Scripps Research Institute

With the heightened concerns over the dangerous side effects of the once-popular antidiabetic drug Avandia, researchers at The Scripps Research Institute (TSRI) in Jupiter, Florida, are working to understand how small molecules, like those in Avandia, can have such varied effects throughout the body. The insights could help researchers design new drugs with better efficacy and fewer side effects.

Douglas Kojetin, an associate professor at TSRI, and his team recently published a study in Structure, showing the ways that Avandia interacts with and changes the shape of a combination of proteins, receptors and DNA—called the "complex"—resulting in the 's effects. In addition to helping inform the design of future antidiabetic drugs, the study revealed that DNA plays an active role in determining the structure of the complex, a finding that has implications for understanding how any small molecule drug affects the body.

Researchers in Kojetin's lab focus on nuclear receptors—proteins that can interact or "bind" to both genetic material, such as DNA and , as well as bind to other proteins called coregulatory proteins that impact gene expression. Avandia, for example, binds to PPARγ, a nuclear receptor, which binds to DNA sequences important in regulating fat storage and metabolism. But PPARγ does not work with Avandia alone. A second nuclear receptor, RXRα, interacts with PPARγ to form a "heterodimer", a complex made up of two different proteins bound together that recruits a co-regulatory called Steroid Receptor Coactivator-2 (SRC-2) to influence the activity of many different genes. As each piece binds, the complex changes shape, like pieces of wet clay mashing together to form a bowl.

The team set out to understand how specific sections of DNA affect the interaction between the nuclear receptor and coregulatory protein. For example, would this nuclear receptor interact with the coregulatory protein the same way if it weren't bound to DNA?

Adding an extra layer of complexity, SRC-2 is an intrinsically disordered protein—a "floppy" protein without a consistent secondary structure that flops around like a loose spaghetti noodle. This means that popular methods that researchers would typically use to understand the protein's structure, like x-ray crystallography, which requires a stable unflopy sample, wouldn't be able to tell the scientists very much about what this protein is doing.

Kojetin's team used a combination of quantitative biochemical, biophysical and solution structural methods to form a detailed understanding of these molecular interactions. Each technique gave his team pieces of information that they used to build a picture of how all of these molecules interact.

"No one tool could have given us the answer. It was really the combination of all these tools that gave us a full picture of what was going on," Kojetin said.

It turned out that what was going on was a "thermodynamic" mechanism by which binding to DNA caused the receptor heterodimer to change its shape and importantly stabilize its floppy regions.

Kojetin's team showed that DNA interaction impacted the potency of Avandia and its ability to recruit the coregulatory protein. The receptors on their own are like two balloons randomly floating around in the wind, explained Kojetin. When it bound to the DNA, the become stabilized, as if the balloons were tied down together, making it easier for SRC-2 to interact with it.

If the proteins had bound to another portion of DNA, the complex may have been able to form a different shape and exert a different, possibly even dangerous effect, or perhaps no effect at all. Different genes are exposed, or accessible, in different bodily tissues. This could help explain how drugs can have one effect in a certain area of the body and a different effect in other areas where the sections of accessible DNA are different.

"The drug does not control activity in the body by itself. When the receptor is bound to different DNA sequences, the activity of the drug could be changed." Knowing this, said Kojetin, "is going to open up a lot of possibilities."

Explore further: Structural discoveries could aid in better drug design

Related Stories

Structural discoveries could aid in better drug design

August 25, 2015

F. Scott Fitzgerald once said that the test of a first-rate intelligence is the ability to hold two opposed ideas in mind at the same time and still retain the ability to function. Now, scientists from the Florida campus ...

Scientists uncover new DNA role in modifying gene function

April 10, 2011

For years, scientists have thought of DNA as a passive blueprint capable only of producing specific proteins through RNA transcription. Now, research led by scientists from the Florida campus of The Scripps Research Institute ...

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

GLUT5 fluorescent probe fingerprints cancer cells

April 19, 2018

Determining the presence of cancer, as well as its type and malignancy, is a stressful process for patients that can take up to two weeks to get a diagnosis. With a new bit of technology—a sugar-transporting biosensor—researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.