Curiosity Mars rover climbing toward ridge top

September 14, 2017, Jet Propulsion Laboratory
Researchers used the Mastcam on NASA's Curiosity Mars rover to gain this detailed view of layers in "Vera Rubin Ridge" from just below the ridge. Credit: NASA/JPL-Caltech/MSSS

NASA's Mars rover Curiosity has begun the steep ascent of an iron-oxide-bearing ridge that's grabbed scientists' attention since before the car-sized rover's 2012 landing.

"We're on the climb now, driving up a route where we can access the layers we've studied from below," said Abigail Fraeman, a Curiosity science-team member at NASA's Jet Propulsion Laboratory in Pasadena, California.

"Vera Rubin Ridge" stands prominently on the northwestern flank of Mount Sharp, resisting erosion better than the less-steep portions of the mountain below and above it. The ridge, also called "Hematite Ridge," was informally named earlier this year in honor of pioneering astrophysicist Vera Rubin.

"As we skirted around the base of the ridge this summer, we had the opportunity to observe the large vertical exposure of that make up the bottom part of the ridge," said Fraeman, who organized the rover's ridge campaign. "But even though steep cliffs are great for exposing the stratifications, they're not so good for driving up."

The ascent to the top of the ridge from a transition in rock-layer appearance at the bottom of it will gain about 213 feet (65 meters) of elevation—about 20 stories. The climb requires a series of drives totaling a little more than a third of a mile (570 meters). Before starting this ascent in early September, Curiosity had gained a total of about 980 feet (about 300 meters) in elevation in drives totaling 10.76 miles (17.32 kilometers) from its landing site to the base of the ridge.

"Vera Rubin Ridge," a favored destination for NASA's Curiosity Mars rover even before the rover landed in 2012, rises near the rover nearly five years later in this panorama from Curiosity's Mastcam. Credit: NASA/JPL-Caltech/MSSS

Curiosity's telephoto observations of the ridge from just beneath it show finer layering, with extensive bright veins of varying widths cutting through the layers.

"Now we'll have a chance to examine the layers up close as the rover climbs," Fraeman said.

Curiosity Project Scientist Ashwin Vasavada of JPL said, "Using data from orbiters and our own approach imaging, the team has chosen places to pause for more extensive studies on the way up, such as where the rock layers show changes in appearance or composition. But the campaign plan will evolve as we examine the rocks in detail. As always, it's a mix of planning and discovery."

The Mastcam on NASA's Curiosity Mars rover captured this view of "Vera Rubin Ridge" about two weeks before the rover starting to ascend this steep ridge on lower Mount Sharp. Credit: NASA/JPL-Caltech/MSSS

In orbital spectrometer observations, the iron-oxide mineral hematite shows up more strongly at the ridge top than elsewhere on lower Mount Sharp, including locations where Curiosity has already found hematite. Researchers seek to gain better understanding about why the ridge resists erosion, what concentrated its hematite, whether those factors are related, and what the rocks of the ridge can reveal about ancient Martian environmental conditions.

"The team is excited to be exploring Vera Rubin Ridge, as this hematite ridge has been a go-to target for Curiosity ever since Gale Crater was selected as the ," said Michael Meyer, lead scientist of NASA's Mars Exploration Program at the agency's Washington headquarters.

This view of "Vera Rubin Ridge" from the ChemCam instrument on NASA's Curiosity Mars rover shows sedimentary layers and fracture-filling mineral deposits. Credit: NASA/JPL-Caltech/CNES/CNRS/LANL/IRAP/IAS/LPGN

During the first year after its landing near the base of Mount Sharp, the Curiosity mission accomplished a major goal by determining that billions of years ago, a Martian lake offered conditions that would have been favorable for microbial life. Curiosity has since traversed through a diversity of environments where both water and wind have left their imprint. Vera Rubin Ridge and layers above it that contain clay and sulfate minerals provide tempting opportunities to learn even more about the history and habitability of ancient Mars.

This view of "Vera Rubin Ridge" from the ChemCam instrument on NASA's Curiosity Mars rover shows sedimentary layers, mineral veins and effects of wind erosion. Credit: NASA/JPL-Caltech/CNES/CNRS/LANL/IRAP/IAS/LPGN

Explore further: Image: NASA Mars Reconnaissance Orbiter views rover climbing Mount Sharp

More information: For more about Curiosity, visit mars.jpl.nasa.gov/msl

Related Stories

Breaks observed in Mars rover wheel treads

March 22, 2017

A routine check of the aluminum wheels on NASA's Curiosity Mars rover has found two small breaks on the rover's left middle wheel—the latest sign of wear and tear as the rover continues its journey, now approaching the ...

Curiosity rover begins next Mars chapter

October 3, 2016

After collecting drilled rock powder in arguably the most scenic landscape yet visited by a Mars rover, NASA's Curiosity mobile laboratory is driving toward uphill destinations as part of its two-year mission extension that ...

Curiosity Mars rover finds mineral match

November 5, 2014

(Phys.org) —Reddish rock powder from the first hole drilled into a Martian mountain by NASA's Curiosity rover has yielded the mission's first confirmation of a mineral mapped from orbit.

Curiosity's drill hole and location are picture perfect

October 5, 2015

On Tuesday, Sept. 29, NASA's Curiosity Mars rover drilled its eighth hole on Mars, and its fifth since reaching Mount Sharp one year ago. The drilling of the hole 2.6-inches (65 millimeters) deep in a rock the team labeled ...

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.