Was this ridge habitable? Mars Curiosity eyes nearby mountain

October 17, 2013 by Elizabeth Howell
Curiosity’s landing site is about eight miles (five kilometers) from a hematite-rich ridge at the bottom of Mount Sharp (Aeolis Mons). Credit: NASA/JPL-Caltech/MSSS, annotated by A. Fraeman

So Curiosity has been on Mars for an Earth year and is now, slowly, making its way over to that ginormous mountain—Mount Sharp, or Aeolis Mons—in the distance. The trek is expected to take at least until mid-2014, if not longer, because the rover will make pit stops at interesting science sites along the way. But far-thinking scientists are already thinking about what areas they would like to examine when it gets there.

One of those is an area that appears to have formed in water. There's a low ridge on the bottom of the mountain that likely includes hematite, a mineral that other Mars rovers have found. (Remember the "blueberries" spotted a few years ago?) Hematite is an iron mineral that comes to be "in association with water", a new study reports, and could point the way to the habitable conditions Curiosity is seeking.

The rub is scientists can't say for sure how the formed until the rover is practically right next to the ridge. There are plenty of pictures from orbit, but not high-resolution enough for the team to make definitive answers.

"Two alternatives are likely: chemical precipitation within the rocks by underground water that became exposed to an oxidizing environment—or weathering by neutral to slightly acidic water," wrote Arizona State University's Red Planet Report. Either way, it shows the ridge likely hosted iron oxidation. Earth's experience with this type of oxidation shows that it happens "almost exclusively" with microorganisms, but that's not a guarantee on Mars.

Mars Reconnaissance Orbiter images show that the ridge is about 660 feet (200 meters) wide and four miles (6.5 kilometers) long, with strata or layers in the ridge appearing to be similar to those of layers in Mount Sharp.

While Curiosity is not designed to seek life, it can ferret out details of the environment. Just a few weeks ago, for example, it uncovered pebbles that likely formed in the presence of water. Other Mars missions have also found evidence of that liquid, with perhaps some of it once arising from the subsurface. Where the came from, and why the environment of Mars changed so much in the last few billion years, are ongoing scientific questions.

Check out more details on the study in Geology.

Explore further: NASA Mars rover Curiosity begins delayed road trip

Related Stories

Ancient streambed found on surface of Mars

May 30, 2013

Rounded pebbles on the surface of Mars indicate that a stream once flowed on the red planet, according to a new study by a team of scientists from NASA's Curiosity rover mission, including a University of California, Davis, ...

Recommended for you

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

Video: A colorful 'landing' on Pluto

January 20, 2017

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip ...

The evolution of massive galaxy clusters

January 20, 2017

Galaxy clusters have long been recognized as important laboratories for the study of galaxy formation and evolution. The advent of the new generation of millimeter and submillimeter wave survey telescopes, like the South ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.