Soft and spherical: Researchers study dynamics of drop impact

August 15, 2017
Contact angles at different stages -- top: spreading; bottom: retracting. Credit: Simeng Chen

For the most part, fluid dynamics researchers have focused efforts to understand the details of impacting drops on flat rigid surfaces; the effect of curved, convex or compliant surfaces on the dynamics of impacting drops is still relatively unknown. This is despite its extreme relevance to modern-day applications, such as 3-D ink-jet printing and the delivery of pesticides on leaves.

A team of researchers from the University of Liverpool Laboratory of Technical Physics in the United Kingdom has now detailed these effects by investigating the impact of water droplets on spherical soft surfaces. They present their research this week in the journal Physics of Fluids, from AIP Publishing.

Using a polydimethylsiloxane (PDMS) silicone elastomer, the researchers produced a variety of convex hemispherical elastic substrates. Different sets of experiments were conducted by the Liverpool team, varying the impact parameters, including diameter ratios, polymer elastic modulus and Weber numbers.

"We took a soft material, a silicone polymer, and we were able to change the softness or hardness of this silicone, preparing it in different ways," said Volfango Bertola, a member of the research team.

The team's analysis focused on the quantities that characterize the morphology, or the spreading and retracting, of impacting drops, and the effects the impact parameters have on spreading and retracting. They used image processing to glimpse into these phenomena, and then to measure spreading angle ranges, wetted curve lengths and dynamic contact angles for impacting various polymers.

A unique image-processing technique based on a goniometric mask provided measurements of the dynamic contact angle during impact. This new technique does not require the drop shape to be spherical, or even to be symmetric, and this is what made the measuring of the dynamic contact angle possible.

The researchers demonstrated that curvature enhances the retraction of the impacted drop. They determined this was due to the difference of energy dissipation induced by the surface curvature. This dissipation is what causes the droplet temperature to rise during impact.

Generally, the impact parameters were shown to significantly affect the dynamic contact angle during impact. A quantitative estimation of deformation energy showed that this energy falls well below the viscous dissipation.

Of the three impact parameters studied, the Weber number was shown to create the greatest effect on the dynamic contact angle. In all situations studied, an increase in the impact Weber number was observed to systematically reduce the dynamic contact angle, regardless of the other impact parameter values. In fact, the Liverpool team found that the effect of the diameter ratio and elastic modulus on spreading is limited.

Using a simple energy conservation approach to account for the via deformation of the substrate explains only a small portion of the experimental results. The group determined that this approach was not sufficient to explain, specifically, the maximum spreading length. This, and other factors, provokes new questions regarding drop on convex soft surfaces; however, the process is well on its way because of these scientists.

"There is a kind of new area that can be explored, this is the first work talking about impacts on soft spheres. This will hopefully encourage others to study these in greater detail, both experimentally and numerically," Bertola said.

Explore further: New theory describes liquid droplet behavior on solid surfaces

More information: Simeng Chen et al, Drop impact on spherical soft surfaces, Physics of Fluids (2017). DOI: 10.1063/1.4996587

Related Stories

Simulating splash at the microscopic level

July 11, 2017

Spray cooling is one of the most promising methods for cooling high heat flow electronics. Two-phase spray cooling, in particular, has been shown to cool heat fluxes that are orders of magnitude higher than traditional cooling ...

A smoother ride over troubled waters

August 11, 2017

Boating through choppy waters can be an exciting but physically exhausting experience. Now researchers at Utah State University's Splash Lab are taking steps toward the design of an inflatable speedboat that absorbs wave ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.