A smoother ride over troubled waters

August 11, 2017
Researchers at USU's Splash Lab are developing the science that will improve soft-hull watercraft design. Their findings could make a ride over choppy watersa lot smoother. Credit: Splash Lab

Boating through choppy waters can be an exciting but physically exhausting experience. Now researchers at Utah State University's Splash Lab are taking steps toward the design of an inflatable speedboat that absorbs wave energy and provides a smoother ride for passengers.

Their findings were recently published in the Journal of Fluid Mechanics, and for the first time demonstrate the unique differences in impact behavior of rigid and elastic bodies.

"Rigid and elastic interact with the water surface quite differently," said Randy Hurd, a PhD candidate at USU and lead author on the study. "When an elastic body impacts the surface, the material deforms and oscillates significantly which changes the water-impact physics compared to a rigid body."

Hurd's team used high-speed cameras to record elastomeric spheres dropping into a tank of water. At 2,000 frames per second, the footage revealed the unique splash curtains and air-filled cavities that form after impact. The group used the images to track the position and deformation of the elastic spheres to understand how energy transfers from the water to the material. By analyzing the results, Hurd says his team can accurately predict the water interaction behavior based on the type of soft material and its speed.

"Being able to predict water interaction from a materials perspective is an important first step in understanding which material types would be best for developing an inflatable watercraft capable of providing a smoother ride over a choppy surface," said Hurd.

The findings are particularly useful to the U.S. Navy and other agencies that deploy watercraft in rough seas. The Splash Lab team worked alongside the United States Office of Naval Research in Newport, R.I., and with noted materials scientist Dr. Allan Bower at Brown University.

Explore further: Walking on water: Researchers unravel science of skipping spheres

More information: Randy C. Hurd et al, Water entry of deformable spheres, Journal of Fluid Mechanics (2017). DOI: 10.1017/jfm.2017.365

Related Stories

Elastic Leidenfrost effect enables soft engines

July 24, 2017

Water droplets float in a hot pan because of the so-called Leidenfrost effect. Now, physicists have discovered a variation: the elastic Leidenfrost effect. It explains why hydrogel balls jump around on a hot plate making ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.