Cry me a river of possibility: Scientists design new adaptive material inspired by tears

April 8, 2013, Harvard University
This is the design of the liquid-infused dynamic material. The bottom two photographs show the dry and lubricated elastic substrates (transparent when at rest). Credit: Harvard University

Imagine a tent that blocks light on a dry and sunny day, and becomes transparent and water-repellent on a dim, rainy day. Or highly precise, self-adjusting contact lenses that also clean themselves. Or pipelines that can optimize the rate of flow depending on the volume of fluid coming through them and the environmental conditions outside.

A team of researchers at the Wyss Institute at Harvard University and Harvard's School of Engineering and Applied Sciences (SEAS) just moved these enticing notions much closer to reality by designing a new kind of adaptive material with tunable transparency and wettability features, as reported yesterday in the online version of Nature Materials.

"The beauty of this system is that it's adaptive and multifunctional," said senior author Joanna Aizenberg, Ph.D., a Core Faculty member at the Wyss Institute and the Amy Smith Berylson Professor of at SEAS.

As demonstrated in these videos, sitting at rest, the adaptive and multifunctional material is smooth, clear and flat; droplets of water or oil on its omniphobic surface flow freely down its surface. Stretching or bending it makes the fluid surface rougher. The rough surface is opaque, and also confers the ability to precisely control the movement of water or oil droplets. Credit: Harvard University

The new material was inspired by dynamic, self-restoring systems in Nature, such as the liquid film that coats your eyes. Individual tears join up to form a dynamic liquid film with an obviously significant optical function that maintains clarity, while keeping the eye moist, protecting it against dust and bacteria, and helping to transport away any wastes – doing all of this and more in literally the blink of an eye.

The bioinspired material is a continuous that coats, and is infused in, an elastic porous substrate – which is what makes it so versatile. It is based on a core concept: any deformation of the substrate – such as stretching, poking, or swelling - changes the size of the pores, which causes the to change its shape.

With this design architecture in place, the team has thus far demonstrated the ability to dynamically control – with great precision – two key functions: transparency and wettability, said Xi Yao, Ph.D, Wyss Institute and SEAS postdoctoral fellow, and lead author of the study.

Sitting at rest, the material is smooth, clear and flat; droplets of water or oil on its surface flow freely off of the material. Stretching the material makes the fluid surface rougher, Yao explained. The rough surface makes it opaque for one thing, and enables one to do something never possible before: It offers the ability to make every droplet of oil or water that is placed on it reversibly start and stop in their tracks. This capability is far superior to the "switchable wettability" of other adaptive that exist today, Yao said, which simply switch between two states – from hydrophobic (water-hating) to hydrophilic (water-loving).

"In addition to transparency and , we can fine-tune basically anything that would respond to a change in surface topography, such as adhesive or anti-fouling behavior," Yao said. They can also design the porous elastic solid such that it responds dynamically to temperature, light, magnetic or electric fields, chemical signals, pressure, or other environmental conditions, he said.

The new bioinspired, adaptive material developed by Joanna Aizenberg and her team is a continuous liquid film that coats, and is infused in, an elastic porous substrate. Any deformation of the substrate -- such as stretching -- changes the size of the pores, which causes the liquid surface to change its shape. To date, the research team has demonstrated the ability to dynamically control two key functions with great precision: Transparency and wettability. As shown here, when stretched, the material confers the ability to reversibly "pin" droplets of water -- stopping them in their tracks. Credit: Harvard University

The material is a next generation of a materials platform that Aizenberg pioneered a few years ago called SLIPS. SLIPS stands for Slippery Liquid-Infused Porous Surfaces, and is a coating that repels just about anything with which it comes into contact – from oil to water and blood.

But whereas SLIPS is a liquid-infused rigid porous surface, "the new material is a liquid-infused elastic porous surface, which is what allows for the fine control over so many adaptive responses above and beyond its ability to repel a wide range of substances. A whole range of surface properties can now be tuned, or switched on and off on demand, through stimulus-induced deformation of the elastic material," Aizenberg said.

"This sophisticated new class of being designed by the Institute's Adaptive Materials Technologies platform led by Joanna Aizenberg have the potential to be game-changers in everything from oil and gas pipelines, to microfluidic and optical systems, building design and construction, textiles, and more," said Wyss Founding Director Donald Ingber, M.D., Ph.D.

Explore further: Bio-inspired coating resists liquids

Related Stories

Bio-inspired coating resists liquids

September 21, 2011

After a rain, the cupped leaf of a pitcher plant becomes a virtually frictionless surface. Sweet-smelling and elegant, the carnivore attracts ants, spiders, and even little frogs. One by one, they slide to their doom.

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Apr 11, 2013
Stole you some idea yet? Nature Materials is the best agent! at ( "Plagiaristic team from Harvard and MIT is stealing big-timely!" & "A robbery à la France")

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.