Researchers use neural networks for odor recognition

August 11, 2017
Credit: National Research University Higher School of Economics

Researchers from the HSE Laboratory of Space Research, Technologies, Systems and Processes have applied fast-learning artificial intelligence systems to odour recognition and developed an electronic nose device capable of recognising the olfactory patterns of a wide range of chemicals. In addition to discriminating between different gas mixtures, the electronic nose will be able to capture and memorise new smells. According to HSE scientists, the product of their research is likely to benefit both security services and members of the public.

Electronic nose devices are gas analysers used for measuring the qualitative and quantitative composition of gas mixtures. The HSE scientists' innovation is that their device is based on solid-state gas-sensitive matrices of semiconductor sensors and uses a fast-learning AI . The proposed technology is highly accurate at analysing gas mixtures and mimics the olfactory function of living organisms by remembering new smells and easily recognising them afterwards.

"There are lots of gas and odour sensors available, but they are designed to recognise just one specific ," says Vladimir Kulagin, professor at MIEM HSE. "For example, methane sensors can detect an increase in this gas and warn underground mine workers of the danger, but if faced with a gas mixture, this sensor will only recognise the methane and ignore the other components. This can pose a problem, since many gases are hazardous when mixed with other gases. MIEM HSE researchers are now working on algorithms, software solutions and techniques for neural network odour recognition. Our main objective at the moment is to increase the range of olfactory patterns the device can recognise by enabling it to learn new smells and commit this information to memory. Essentially, we want to teach the device to discriminate between hazardous and non-hazardous gas mixtures and memorise them quickly. For this purpose, it needs to know the characteristics of each gas."

This is how it will work. If the device captures a smell it does not recognize, the AI will search its database for the closest similar smell determined by the smallest Hamming distance to any known smell code. Where no such close second exists, meaning the distances between codes exceed the Hamming distance in all neural networks, the device will identify the smell as being new.

In this case, the new olfactory pattern will be uploaded to the database and a new neural network trained for this smell. As a result, both automatic learning of new smells and more accurate recognition are achieved. Where a new smell matches two different patterns in the database, the one whose code is closer to the reference code by the Hamming distance (based on the number of bit coincidences) is preferred. Another advantage is the possibility of correcting e-nose errors due to aging of the array of gas sensors.

Potential applications of the are widespread and include environmental monitoring, detecting terrorist threats to people and facilities, early warning of technogenic disasters, aircraft or spacecraft on-board instruments, technology for monitoring feedstock quality, and odour control for industrial processes.

Explore further: Artificial snot enhances electronic nose

Related Stories

Artificial snot enhances electronic nose

April 30, 2007

Researchers at The University of Warwick and Leicester University have used an artificial snot (nasal mucus) to significantly enhance the performance of electronic noses.

Human-like nose can sniff out contamination in drinking water

September 9, 2015

A bioelectronic nose that mimics the human nose can detect traces of bacteria in water by smelling it, without the need for complex equipment and testing. According to a study published in Biosensors and Bioelectronics the ...

Recommended for you

New X-ray spectroscopy explores hydrogen-generating catalyst

November 22, 2017

Using a newly developed technique, researchers from Japan, Germany and the U.S. have identified a key step in production of hydrogen gas by a bacterial enzyme. Understanding these reactions could be important in developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.