Now you can levitate liquids and insects at home

August 15, 2017, University of Bristol
An acoustic levitator holding in mid-air Styrofoam, water, coffee and paper. Credit: Asier Marzo © 2017

Levitation techniques are no longer confined to the laboratory thanks to University of Bristol engineers who have developed an easier way for suspending matter in mid-air by developing a 3D-printed acoustic levitator.

This , published in Review of Scientific Instruments, could be applied to a range of applications, including blood tests.

Anyone who has felt their chest vibrating with the energy of the soundwaves at a festival is already familiar with the principle behind acoustic levitation. Acoustic levitation uses powerful acoustic waves to push particles from all directions and trap them in mid-air. By using ultrasound - a high-pitched sound above human hearing - it is possible to use powerful vibrations without causing any harm to humans.

Magnetic levitation uses magnetic fields to suspend objects in mid-air. Acoustic levitation is not as strong as but it can act on a wide range of materials, from liquids to living animals.

Using parking sensors, a motor driver, an Arduino (a single board microcontroller) and a 3D-printed part, the University of Bristol team has developed an instruction pack for those wanting to assemble their own levitator at home or school. The instructions will enable any researcher to put together a levitator and conduct experiments in acoustic levitation. This levitator is safe to use, robust against temperature or humidity changes, and can operate for extensive periods of time, enabling experiments that were not possible before.

Dr. Asier Marzo from the University of Bristol's Department of Mechanical Engineering, explains:

"Levitating samples in mid-air can improve diagnosis from blood samples and detection of the structure of molecules. Usually a sample on a microscope slide is illuminated with x-rays, lasers or another type of radiation so the reflected radiation can be analysed. However, no matter how transparent the is, it will always interfere with the test. On the contrary, if the sample is levitated, all the reflections are going to be from the sample.

"Acoustic has been explored in hundreds of studies for applications in pharmaceuticals, biology or biomaterials. It holds the promise of supporting innovative and ground-breaking processes. However, historically levitators have been restricted to a small number of research labs because they needed to be custom-made, carefully tuned and required high-voltage. Now, not only scientists but also students can build their own levitator at home or school to experiment and try new applications of ."

Explore further: Acoustic levitation made simple

More information: Asier Marzo et al. TinyLev: A multi-emitter single-axis acoustic levitator, Review of Scientific Instruments (2017). DOI: 10.1063/1.4989995

Related Stories

Acoustic levitation made simple

January 5, 2015

A team of researchers at the University of São Paulo in Brazil has developed a new levitation device that can hover a tiny object with more control than any instrument that has come before.

Boeing eyes 3D printing objects levitating in space

February 28, 2016

Has Boeing been exploring the printing of 3D printing of levitating objects? Yes, Boeing has patented technology to 3D print objects while levitating in space. PatentYogi has presented a video that explains what Boeing had ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.