High-speed video study reveals the nature of the cobra wave

August 29, 2017 by Bob Yirka, Phys.org report
Credit: Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.084301

A small team of researchers from multiple institutions in France has learned more about the properties of the "cobra wave" by building structures from popsicle sticks and filming wave progressions with a high-speed camera. In their paper published in the journal Physical Review Letters, Jean-Philippe Boucher, Christophe Clanet, David Quéré and Frédéric Chevy describe the series of experiments they carried out with the sticks and what they learned in the process.

A cobra wave is, by definition, a wave that occurs when popsicle sticks are bound together in a certain way under tension and are then released—the sticks become unbound as the wave propagates the length of the structure. Understanding the cobra wave and how it works is important because researchers believe that some biological processes work in the same way.

To learn more about the cobra wave, the group assembled a large number of popsicle lattices in arrangements that were similar to previous methods of creating the effect—each resembled a number of Xs lined up next to one another, sort of like the small fences used in a flower garden. The two ends had a different configuration, with sticks placed in such a way as to prevent adjacent ones from unraveling. Once the structure is set, all it takes is pulling one stick from the end to create the wave, which moves in fashion similar to dominoes—one stick unraveling causes the next to unravel, until the structure is undone. There is one particularly unique characteristic of the wave—as it gets going, the part of the structure that has not come undone rises into the air, causing the structure to bend in the shape of a cobra about to strike. Another characteristic of the structure and associated wave is the sticks flying every which way as the wave progresses, creating an impressive display.

Via highs-speed video of multiple in action with the variably sized popsicles sticks arranged in slightly different ways, the researchers learned that stick length must fit into a narrow range of possibilities. They also found that the recoil was due to sticks being ejected. The sticks, of course, got their kinetic energy from the stored potential energy derived from bending. The team also derived wave speed formulas based on characteristics of the sticks. As for the unique shape, the team found that it resulted from competition between the recoil from sticks being ejected and gravitational forces.

Explore further: British vets warn against throwing sticks for dogs

More information: Jean-Philippe Boucher et al. Popsicle-Stick Cobra Wave, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.084301

Related Stories

British vets warn against throwing sticks for dogs

January 20, 2016

British vets on Wednesday warned against throwing sticks for dogs to chase, saying that thousands of pets every year impale themselves or get dangerous infections from biting into the wood.

A wave's 'sweet spot' revealed

June 29, 2017

For surfers, finding the "sweet spot," the most powerful part of the wave, is part of the thrill and the challenge.

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.