Tiny 'micro drop' chemical reactors are helping to revolutionise scientific experiments

July 4, 2017 by Fabrice Gielen, The Conversation

Science is getting smaller. From two-dimensional new materials to nano-robots, many of the latest advances are being made at scales impossible to see with the human eye.

The latest technique to shake things up at the micro level is a way to trap and study individual living to try to understand why they malfunction when diseased. Until now, scientists have done this with electrode "microtraps" and highly complex networks of channels carved into plastic chips.

But now there's a way to analyse up to millions of cells simultaneously by putting them inside tiny water-in-oil droplets not much bigger than the cells themselves. This could massively speed up efforts to identify , find new drug molecules or new ways to diagnose disease.

The days when scientists carried out experiments by mixing chemicals in large glass flasks are long gone. Nowadays, tests are performed in trays punctuated by a number of "microwell" holes that mean just a few microlitres (millionths of a litre) of each sample is needed. The difficulty with going much smaller is that it's hard to move liquid around at this scale because really tiny drops tend to clump together or evaporate.

Although the potential of encapsulating was identified as early as the 1950s, the droplet field has really picked up pace with the emergence of fabrication technologies borrowed from the semiconductor industry.

The microdroplet solution is to separate and protect each picolitre (one trillionth of a litre) drop of water by wrapping it in oil. To do this, you feed the water and oil through tiny tubes in a "microfluidic" device and force them to meet at a cross junction where they combine into individual microdroplets. This can create many thousands of identical tiny chemical reactors a second.

Each droplet represents an individual reaction vessel.

Other microfluidic devices can be used to combine, split or sort the droplets, just as a scientist might do at a larger scale with a pipette Specially formulated chemicals at the interface between the water and oil keep the droplets stable for days at a time.

Finding a cellular needle in a haystack

Droplets are an attractive proposition for tackling needle-in-a-haystack problems, such as isolating very rare cells with a unique mutation or molecular make-up. For example, cells from a tumour can sometimes break off and circulate through the bloodstream, potentially causing cancer elsewhere in the body (metastasis). Finding a way to detect these circulating (CTCs) would essentially provide a blood test update on the state of a patient's cancer. But they are very hard to find because they exist at concentrations as low as one per 10 ml of blood. Using a microdroplet technique could allow doctors to quickly comb through the cells from a patient's blood sample to find a CTC.

Microdroplet techniques can even help confine DNA molecules together with the proteins produced by specific genes, such as biocatalysts or enzymes that help enable certain chemical reactions in a living organism. This means we can find rare DNA mutations that result in more efficient biocatalysts, a process called directed evolution. This is helpful because many biocatalysts are responsible for reactions needed for industrial processes, from washing using detergent powders to making biofuels.

Today, the process of screening gene libraries with millions of encoded members is becoming more and more routine. Another promising application is to use environmental samples in the search for molecules that could be used as antibiotics or anti-cancer agents. Likewise, researchers can assess collections of antibodies with the hope of finding one that can function as a drug.

Microdroplet techniques do have their limits. For example, small molecules can sometimes diffuse through the oil phase making droplets in effect leaky compartments. Yet there are still many potential advances to be made. For example, one can envision truly personalised medicine where many different drugs are rapidly tested against many different patient cells to find which one is best to prescribe. Microdroplets have had just a decade of use. Think of what they could achieve in the future.

Explore further: Team devises a new method that could speed up vaccine development for HIV

Related Stories

Stabilisation of microdroplets using ink jet process

July 31, 2013

Progress means that many things that are used in everyday life are becoming more manageable, practical and generally smaller. This also applies to biological and chemical experiments. To save material and resources, scientists ...

Microdroplet reactors mimic living systems

January 20, 2016

"Living systems are achieved by complex chemical reaction dynamics far from equilibrium, such as gene expression networks, signalling networks, metabolic circuits and neural networks," explains Masahiro Takinoue at Tokyo ...

In a sample of blood, researchers probe for cancer clues

March 24, 2017

One day, patients may be able to monitor their body's response to cancer therapy just by having their blood drawn. A new study, led by bioengineers at UC Berkeley, has taken an important step in that direction by measuring ...

Recommended for you

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite lactate combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with ...

Research team uncovers lost images from the 19th century

June 22, 2018

Art curators will be able to recover images on daguerreotypes, the earliest form of photography that used silver plates, after a team of scientists led by Western University learned how to use light to see through degradation ...

CryoEM study captures opioid signaling in the act

June 22, 2018

Opioid drugs like morphine and fentanyl are a mainstay of modern pain medicine. But they also cause constipation, are highly addictive, and can lead to fatal respiratory failure if taken at too high a dose. Scientists have ...

Researchers achieve unprecedented control of polymer grids

June 21, 2018

Synthetic polymers are ubiquitous—nylon, polyester, Teflon and epoxy, to name just a few—and these polymers are all long, linear structures that tangle into imprecise structures. Chemists have long dreamed of making polymers ...

Template to create superatoms could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms—combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.