Research team develops record laser on chip

July 3, 2017, University of Twente
Credit: University of Twente

Working in collaboration with the Lionix company, researchers from the University of Twente's MESA+ research institute have developed the world's most narrowband diode laser on a chip. This laser represents a breakthrough in the fast-growing field of photonics, and will bring applications like 5G internet and accurate GPS closer. Research leader Professor Klaus Boller presented the research results during a prestigious scientific conference in Munich.

We are slowly reaching the bounds of what is possible with electronics. That is why scientists and the private sector are committed to photonics – a key technology that makes numerous other innovations possible. This involves the deployment of photons () for transporting and processing data.

For photonic chips to function as efficiently as possible, one has to be able to properly control the light signals. This means that all the light particles being transmitted must have, as closely as possible, the same frequency - that is, the same colour. The University of Twente researchers have managed to develop a minuscule laser on a chip with a maximum bandwidth (the maximum uncertainty of frequency) of just 290 Hertz. By some distance, this is the most accurate laser on a chip that has ever been created. Boller: "Our signal is more than ten times more coherent – or clean – than any other laser on a ."

The newly-developed laser is tunable, which means that users can choose the colour of the laser themselves, within a broad range. The device is a hybrid laser, which means that it essentially consists of two different , optically connected to each other.

The record will bring countless applications within reach, such as controlling movable antennae on phone masts for 5G mobile internet, faster data flows through glass fiber networks, or more accurate GPS systems and sensors for monitoring the structural integrity of buildings and bridges.

Explore further: Research team 'activates' photonic chip for communication with light

Related Stories

Laser source for biosensors

April 15, 2016

In the area of nano-photonics, scientists for the first time succeeded in integrating a laser with an organic gain medium on a silicon photonic chip. This approach is of enormous potential for low-cost biosensors that might ...

Researchers use holography to improve nanophotonic circuits

February 24, 2017

Nanophotonic circuits, tiny chips which filter and steer light, suffer from small random variations which degrade the transmission of light. Researchers have now found a way to compensate those variations, which may lead ...

First step towards photonic quantum network

January 25, 2017

Advanced photonic nanostructures are well on their way to revolutionising quantum technology for quantum networks based on light. Researchers from the Niels Bohr Institute have now developed the first building blocks needed ...

Recommended for you

Scientists create diodes made of light

March 16, 2018

Photonics researchers at the National Physical Laboratory (NPL) have achieved the extra-ordinary by creating a diode consisting of light that can be used, for the first time, in miniaturised photonic circuits, as published ...

Quantum speed limits are not actually quantum

March 15, 2018

Quantum mechanics has fundamental speed limits—upper bounds on the rate at which quantum systems can evolve. However, two groups working independently have published papers showing for the first time that quantum speed ...

Thermally driven spin current in DNA

March 15, 2018

An emerging field that has generated a wide range of interest, spin caloritronics, is an offshoot of spintronics that explores how heat currents transport electron spin. Spin caloritronics researchers are particularly interested ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.