An organogelator-cellulose composite material for practical and eco-friendly marine oil-spill recovery

July 7, 2017, Wiley
An organogelator–cellulose composite material for practical and eco-friendly marine oil-spill recovery
Credit: Wiley

Spilt crude oil has repeatedly polluted and even destroyed marine ecosystems. An effective measure would be to remove spilt oil slicks by absorption into a separable solid phase. As Indian scientists now report in the journal Angewandte Chemie, congelation of the oil to a rigid gel within impregnated cellulose and scooping the particles out is possible.

Marine oil spills are disasters that cannot be completely avoided as long as we drill for oil or transport it across the ocean. As oil slicks pose huge environmental and economic threats, people try to recover the floating spilt oil from the water surface before it reaches the shores or is emulsified by a turbulent sea. But this is difficult. Simply skimming or booming often fails as the oil film quickly spreads out in large areas. Kana M. Suresan and Annamalai Prathap from the Indian Institute of Science, Education and Research (IISER) Thiruvananthapuram in Kerala, India, have developed and tested an intriguingly simple strategy. Combining absorption and gelation processes, they tightly bound the oil to a porous matrix and then simply scooped the solid particles out of the water. Even full with the oil, the granules did not sink but remained at the surface.

The scientists chose cellulose as an environmentally friendly, cheap, and porous carrier matrix and impregnated it with a so-called oleogelator, which was a cheap mannitol-based organic compound. This simple impregnation step proved to be key in converting the cellulose to an effective oil-absorbing and recycling system.

The first reason for that is the gelation ability of the gelator. "Phase-selective organogelators are amphiphiles which can congeal oils selectively from a biphasic mixture of oil and water," the scientists explain. Gelation occurs because the gelator molecules get dissolved in the oily phase, and then they form a three-dimensional fiber network through hydrogen bonding. The oil becomes trapped in this fibrillar network to form a rigid gel. Thus, gelation turns the liquid oil phase into a solid one, which can be simply scooped out.

The other advantage of impregnation is that the gelator renders the cellulose matrix hydrophobic. It did not suck in water as naked does. But it "absorbed all the oil, and the rigid globules containing the congealed oil could be scooped out after two hours, leaving the clean ," the authors reported. And even recycling was possible: The scientists demonstrated that squeezing or distillation of the congealed granules can yield the spilt oil. This simple, cheap, and environmentally benign system will add interesting aspects for further field research.

Explore further: Sugar battles oil spills

More information: Annamalai Prathap et al. Organogelator-Cellulose Composite for Practical and Eco-Friendly Marine Oil-Spill Recovery, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201704699

Related Stories

Sugar battles oil spills

August 12, 2010

The environment has often suffered from the catastrophic effects of an oil spill, the most recent example being the oil spill in the Gulf of Mexico. The search for ways to remove oil from polluted water is therefore urgent. ...

Chemists use sugar-based gelators to solidify vegetable oils

December 19, 2013

Researchers at The City College of New York have reported the successful transformation of vegetable oils to a semisolid form using low-calorie sugars as a structuring agent. The findings portend the development of alternatives ...

Unraveling the science behind biomass breakdown

October 18, 2016

Lignocellulosic biomass—plant matter such as cornstalks, straw, and woody plants—is a sustainable source for production of bio-based fuels and chemicals. However, the deconstruction of biomass is one of the most complex ...

Recommended for you

Weighing single molecules with light

April 26, 2018

Scientists at Oxford University have developed a light-based measuring technique that could transform our ability to characterise biomolecules.

Proof of water wires motivated by a biological water channel

April 26, 2018

Aquaporins are proteins that serve as water channels to regulate the flow of water across biological cell membranes. They also remove excess salt and impurities in the body, and it is this aspect that has led to much interest ...

Transplant-damaging virus comes into focus

April 26, 2018

Researchers from the University of Leeds have revealed the structure of a virus which affects kidney and bone marrow transplant patients in near-atomic levels of detail for the first time.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.