Three-dimensional, direction-dependent force measurement at the subatomic scale

May 10, 2017, Osaka University
Figure 1: Bimodal atomic force microscopy provides three-dimensional force vector maps with subatomic resolution. The cantilever is simultaneously oscillated laterally and vertically to determine the vector mapping over the buckled dimers on the Ge(001) surface. Credit: Osaka University

Atomic force microscopy (AFM) is an extremely sensitive technique that allows us to image materials and/or characterize their physical properties on the atomic scale by sensing the force above material surfaces using a precisely controlled tip. However, conventional AFM only provides the surface normal component of the force (the Z direction) and ignores the components parallel to the surface (the X and Y directions). To fully characterize materials used in nanoscale devices, it is necessary to obtain information about parameters with directionality, such as electronic, magnetic, and elastic properties, in more than just the Z direction. That is, it is desirable to measure these parameters in the X and Y directions parallel to the surface of a material as well. Measuring the distribution of such material parameters on the atomic scale will increase our understanding of chemical composition and reactions, surface morphology, molecular manipulation, and nanomachine operation.

A research group at Osaka University has recently developed an AFM-based approach called "bimodal AFM" to obtain information about material surfaces in the X, Y, and Z directions (that is, in three dimensions) on the subatomic scale. The researchers measured the total force between an AFM tip and material surface in the X, Y, and Z directions using a germanium (Ge) surface as a substrate. Their collaborative partner, the Institute of Physics of the Slovak Academy of Sciences, contributed computer simulations of the tip–surface interactions. The bimodal AFM approach was recently reported in Nature Physics.

"A clean Ge(001) surface has alternately aligned anisotropic dimers, which are rotated by 90° across the step, meaning they show a two-domain structure," explains first author Yoshitaka Naitoh. "We probed the force fields from each domain in the vertical by oscillating the AFM tip at the flexural resonance frequency and in the parallel direction by oscillating it at the torsional one."

The team first expressed the force components as vectors, providing the vector distribution above the surface at the subatomic scale. The computer simulation supported the experimental results and shed light on the nature of chemical tip termination and morphology and, in particular, helped to clarify the outstanding questions regarding the tip–surface distances in the experiment.

"We measured the magnitude and direction of the between the AFM tip and Ge on a subatomic scale in three dimensions," says Naitoh. "Such measurements will aid understanding of the structure and chemical reactions of functionalized surfaces."

The developed bimodal AFM approach will allow researchers to investigate the of in greater detail on the nanoscale, which should facilitate development of devices, nanotechnology, and friction/lubrication systems.

Explore further: Reducing conducting thin film surface roughness for electronics

More information: Yoshitaka Naitoh et al. Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy, Nature Physics (2017). DOI: 10.1038/nphys4083

Related Stories

Nanowires as sensors in new type of atomic force microscope

October 17, 2016

A new type of atomic force microscope (AFM) uses nanowires as tiny sensors. Unlike standard AFM, the device with a nanowire sensor enables measurements of both the size and direction of forces. Physicists at the University ...

Controlling the stiffness of a material at the nanoscale

February 24, 2017

Using a needle far thinner than a human hair, scientists revealed how to control mechanical stiffness in a promising material. The team applied an electric field with a nano-sized needle to cause a reversible change in the ...

On-surface chemistry leads to novel products

September 13, 2016

On-surface chemical reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. The first-step, second-step, and third-step products can be analyzed in detail using a high-resolution atomic force ...

How water flows near the superhydrophobic surface

October 14, 2016

Water has an unusual property when it flows closely to some specially designed surfaces—its speed isn't equal to zero, even in the layer that directly touches the wall. This means that liquid doesn't adhere to the surface, ...

Recommended for you

Magnesium magnificent for plasmonic applications

May 22, 2018

Rice University researchers have synthesized and isolated plasmonic magnesium nanoparticles that show all the promise of their gold, silver and aluminum cousins with none of the drawbacks.

Valves for tiny particles

May 22, 2018

Newly developed nanovalves allow the flow of individual nanoparticles in liquids to be controlled in tiny channels. This is of interest for lab-on-a-chip applications such as in materials science and biomedicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.