Space weather model simulates solar storms from nowhere

May 8, 2017 by Lina Tran, NASA's Goddard Space Flight Center
Watch the evolution of a stealth CME in this simulation. Differential rotation creates a twisted mass of magnetic fields on the sun, which then pinches off and speeds out into space. The image of the sun is from NASA's STEREO. Colored lines depict magnetic field lines, and the different colors indicate in which layers of the sun's atmosphere they originate. The white lines become stressed and form a coil, eventually erupting from the sun. Credit: NASA's Goddard Space Flight Center/ARMS/Joy Ng, producer

Our ever-changing sun continuously shoots solar material into space. The grandest such events are massive clouds that erupt from the sun, called coronal mass ejections, or CMEs. These solar storms often come first with some kind of warning—the bright flash of a flare, a burst of heat or a flurry of solar energetic particles. But another kind of storm has puzzled scientists for its lack of typical warning signs: They seem to come from nowhere, and scientists call them stealth CMEs.

Now, an international team of scientists, led by the Space Sciences Laboratory at University of California, Berkeley, and funded in part by NASA, has developed a that simulates the evolution of these stealthy . The scientists relied upon NASA missions STEREO and SOHO for this work, fine-tuning their model until the simulations matched the space-based observations. Their work shows how a slow, quiet process can unexpectedly create a twisted mass of magnetic fields on the sun, which then pinches off and speeds out into space—all without any advance warning.

Compared to typical CMEs, which erupt from the sun as fast as 1800 miles per second, stealth CMEs move at a rambling gait—between 250 to 435 miles per second. That's roughly the speed of the more common solar wind, the constant stream of charged particles that flows from the sun. At that speed, stealth CMEs aren't typically powerful enough to drive major space weather events, but because of their internal magnetic structure they can still cause minor to moderate disturbances to Earth's magnetic .

To uncover the origins of stealth CMEs, the scientists developed a model of the sun's magnetic fields, simulating their strength and movement in the sun's atmosphere. Central to the model was the sun's differential rotation, meaning different points on the sun rotate at different speeds. Unlike Earth, which rotates as a solid body, the sun rotates faster at the equator than it does at its poles.

The model showed differential rotation causes the sun's magnetic fields to stretch and spread at different rates. The scientists demonstrated this constant process generates enough energy to form stealth CMEs over the course of roughly two weeks. The sun's rotation increasingly stresses lines over time, eventually warping them into a strained coil of energy. When enough tension builds, the coil expands and pinches off into a massive bubble of twisted magnetic fields—and without warning—the stealth CME quietly leaves the sun.

Such computer models can help researchers better understand how the sun affects near-Earth space, and potentially improve our ability to predict weather, as is done for the nation by the U.S. National Oceanic and Atmospheric Administration. A paper published in the Journal of Geophysical Research on Nov. 5, 2016, summarizes this work.

Explore further: Sun's eruptions might all have same trigger

More information: B. J. Lynch et al. A model for stealth coronal mass ejections, Journal of Geophysical Research: Space Physics (2016). DOI: 10.1002/2016JA023432

Related Stories

Sun's eruptions might all have same trigger

April 26, 2017

Large and small scale solar eruptions might all be triggered by a single process, according to new research that leads to better understanding of the Sun's activity.

Image: Snowing in space?

November 2, 2015

The flurry of what looks like snow in this video is actually a barrage of energetic particles. This is what's known as a solar radiation storm, hitting an instrument onboard ESA/NASA's Solar and Heliospheric Observatory, ...

Sun produces two CMEs

February 7, 2013

In the evening of Feb. 5, 2013, the sun erupted with two coronal mass ejections or CMEs that may glance near-Earth space. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory ...

NASA spacecraft observe Nov. 20 solar eruption

November 20, 2012

On Nov. 20, 2012, at 7:09 a.m. EST, the sun erupted with a coronal mass ejection or CME. Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into space and can reach Earth one ...

Recommended for you

Study details the history of Saturn's small inner moons

May 22, 2018

The small inner moons of Saturn look like giant ravioli and spaetzle. Their spectacular shape has been revealed by the Cassini spacecraft. For the first time, researchers of the University of Bern show how these moons were ...

Two bright high-redshift quasars discovered

May 21, 2018

Astronomers have detected two new bright quasars at a redshift of about 5.0. The newly found quasi-stellar objects (QSOs) are among the brightest high-redshift quasars known to date. The finding was presented May 9 in a paper ...

First interstellar immigrant discovered in the solar system

May 21, 2018

A new study has discovered the first known permanent immigrant to our Solar System. The asteroid, currently nestling in Jupiter's orbit, is the first known asteroid to have been captured from another star system. The work ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.