NASA spacecraft observe Nov. 20 solar eruption

November 20, 2012 by Karen C. Fox
NASA's Solar Terrestrial Relations Observatory (STEREO) captured this image of a coronal mass ejection on Nov. 20, 2012 at 8:54 a.m. EST, about two hours after it left the sun. Credit: NASA/STEREO

On Nov. 20, 2012, at 7:09 a.m. EST, the sun erupted with a coronal mass ejection or CME. Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into space and can reach Earth one to three days later. When Earth-directed, CMEs can affect electronic systems in satellites and on Earth.

Experimental NASA research models, based on observations from the (STEREO), show that the Nov. 20 CME left the sun at speeds of 450 miles per second, which is a slow to average speed for CMEs. CMEs can cause a space called a geomagnetic storm, which occurs when CMEs successfully connect up with the outside of the Earth's magnetic envelope, the magnetosphere, for an extended period of time.

In the past, CMEs of this speed have not usually caused substantial geomagnetic storms. They have caused auroras near the poles but are unlikely to cause disruptions to electrical systems on Earth or interfere with GPS or satellite-based communications systems.

Explore further: Sun releases slow moving CME

Related Stories

Sun releases slow moving CME

November 12, 2012

On Nov. 9, 2012, at 10:24 a.m. EST, the sun emitted an Earth-directed coronal mass ejection (CME). A CME is a solar phenomenon that can send billions of tons of solar particles into space and can reach Earth one to three ...

NASA sees sun unleash a wide, but benign, CME

September 28, 2012

The sun erupted with a wide, Earth-directed coronal mass ejection (CME) on Sept. 27, 2012 at 10:25 p.m. EDT. CMEs are a phenomenon that can send billions of tons of solar particles into space that can reach Earth one to three ...

Solar flares: What does it take to be X-class?

August 10, 2011

Solar flares are giant explosions on the sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). The number of ...

Six coronal mass ejections in 24 hours

September 22, 2011

The sun let loose with at least six coronal mass ejections (CMEs) -- solar phenomena that can send solar particles into space and affect electronic systems in satellites -- from 7 PM ET on September 18, 2011 until 1 PM on ...

Moderate Labor Day solar flare eruption

September 7, 2011

At 9:35 PM ET on September 5, 2011, the sun emitted an Earth-directed M5.3 class flare as measured by the GOES satellite. The flare erupted from a region of the sun that appears close to dead center from Earth's perspective, ...

Recommended for you

SDO sees partial eclipse in space

May 26, 2017

On May 25, 2017, NASA's Solar Dynamics Observatory, or SDO, saw a partial solar eclipse in space when it caught the moon passing in front of the sun. The lunar transit lasted almost an hour, between 2:24 and 3:17 p.m. EDT, ...

Collapsing star gives birth to a black hole

May 25, 2017

Astronomers have watched as a massive, dying star was likely reborn as a black hole. It took the combined power of the Large Binocular Telescope (LBT), and NASA's Hubble and Spitzer space telescopes to go looking for remnants ...

Jupiter's complex transient auroras

May 25, 2017

Combined observations from three spacecraft show that Jupiter's brightest auroral features recorded to date are powered by both the volcanic moon Io and interaction with the solar wind.

Methanol detected for first time around young star

May 25, 2017

Methanol, a key building block for the complex organic compounds that comprise life, has been detected for the first time in the protoplanetary disk of a young, distant star. This finding could help scientists better understand ...

New Neliota project detects flashes from lunar impacts

May 25, 2017

Using a system developed under an ESA contract, the Greek NELIOTA project has begun to detect flashes of light caused by small pieces of rock striking the moon's surface. NELIOTA is the first system that can determine the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.