New space weather model helps simulate magnetic structure of solar storms

New space weather model helps simulate magnetic structure of solar storms
These animated images show the propagation of a CME as it erupts from the sun and travels through space, comparing actual NASA and ESA’s SOHO satellite observations on the right to the simulation from the new CME-modeling tool at the Community Coordinated Modeling Center on the left. SOHO observed this CME on March 7, 2011. Credit: NASA/CCMC/University of Michigan/Joy Ng

The dynamic space environment that surrounds Earth - the space our astronauts and spacecraft travel through - can be rattled by huge solar eruptions from the sun, which spew giant clouds of magnetic energy and plasma, a hot gas of electrically charged particles, out into space. The magnetic field of these solar eruptions are difficult to predict and can interact with Earth's magnetic fields, causing space weather effects.

A new tool called EEGGL - short for the Eruptive Event Generator (Gibson and Low) and pronounced "eagle" - helps map out the paths of these magnetically structured clouds, called coronal mass ejections or CMEs, before they reach Earth. EEGGL is part of a much larger new of the corona, the sun's outer atmosphere, and interplanetary , developed by a team at the University of Michigan. Built to simulate solar storms, EEGGL helps NASA study how a CME might travel through space to Earth and what magnetic configuration it will have when it arrives. The model is hosted by the Community Coordinated Modeling Center, or CCMC, at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The new model is known as a "first principles" model because its calculations are based on the fundamental physics theory that describes the event - in this case, the plasma properties and magnetic free energy, or electromagnetics, guiding a CME's movement through space.

Such computer models can help researchers better understand how the sun will affect near-Earth space, and potentially improve our ability to predict space weather, as is done by the U.S. National Oceanic and Atmospheric Administration.

Taking into account the of a CME from its initiation at the sun could mark a big step in CME modeling; various other models initiate CMEs solely based on the kinematic properties, that is, the mass and initial velocity inferred from spacecraft observations. Incorporating the magnetic properties at CME initiation may give scientists a better idea of a CME's magnetic structure and ultimately, how this structure influences the CME's path through space and interaction with Earth's magnetic fields - an important piece to the puzzle of the sun's dynamic behavior.

The model begins with real spacecraft observations of a CME, including the eruption's initial speed and location on the sun, and then projects how the CME could travel based on the fundamental laws of electromagnetics. Ultimately, it returns a series of synthetic images, which look similar to those produced of actual observations from NASA and ESA's SOHO or NASA's STEREO, simulating the CME's propagation through space.

A team led by Tamas Gombosi at the University of Michigan's Department of Climate and Space Sciences and Engineering developed the model as part of its Space Weather Modeling Framework, which is also hosted at the CCMC. All of the CCMC's models are available for use and study by researchers and the public through runs on request. In addition, EEGGL, and the model it supports, is the first "first principles" model to simulate CMEs including their magnetic structure open to the public.

Explore further

NASA releases new visualization of space environment at Pluto

Citation: New space weather model helps simulate magnetic structure of solar storms (2017, January 26) retrieved 19 August 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Jan 27, 2017
IMHO, this is climate science that can help us. The Carrington event was only 158 years ago, and with our reliance on electronics, another one could be deadly for those relying on electronics.

Jan 28, 2017
Great stuff. A first principles model well duplicating reality indicates that our understanding of the physics that affect solar storms is pretty good. Notably, it includes magnetics.

I expect we'll have the EU folks in here whining about how nobody understands physics again shortly. In b4 that.

Jan 28, 2017
Sadly da shneid, from what I've been told that just because it looks like a duck doesn't mean it's a duck. Besides, those two ducks don't look too much alike, although the general mechanism looks to be ascertained none of the fine details is achieved. Seems as if the first principles claim is tenuous at best as the framework relies on MHD models which have been shown by experiment to be wrong, some 50 years ago.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more