Using single-cell RNA sequencing and clever statistical analysis to track stem cells as they mature

May 11, 2017
The nose is lined with sensory tissue, the olfactory epithelium, that contains various types of cells, all of which arise from olfactory stem cells (green). Among these are smell-sensing neurons (orange), progenitor cells (cyan) and support cells (magenta sustentacular cells and blue microvillous cells). Credit: Russell Fletcher & John Ngai, UC Berkeley

Adult stem cells have the ability to transform into many types of cells, but tracing the path individual stem cells follow as they mature and identifying the molecules that trigger these fateful decisions are difficult in a living animal.

University of California, Berkeley, neuroscientists have now combined new techniques for sequencing the RNA in with detailed statistical analysis to more easily track individual stem in the nose, uncovering clues that someday could help restore to those who have lost it.

The results are published this week in the journal Cell Stem Cell.

"A stem cell's job is twofold: to replace or recreate that are lost over time, both through normal aging and after injury, and to replace themselves so that the process can continue over the life of the animal," said senior author John Ngai, the Coates Family Professor of Neuroscience and a member of UC Berkeley's Helen Wills Neuroscience Institute and the Berkeley Stem Cell Center. "We are getting closer to understanding how mature sensory neurons are generated from , an understanding that's key for an eventual stem cell therapy to restore function."

Ngai noted that perhaps one-quarter of all people over the age of 50 have some loss of smell, yet doctors have little understanding why, and no treatments for most cases. There's not even a standardized test for loss of smell, as there is for vision or hearing loss, in spite of widespread reports of suffering by patients who have lost their sense of smell.

"Some cases of anosmia—the loss of the sense of smell—are due to traumatic injury, and there is generally not a whole lot you can do about that," he said. "But some are age-related, or occur for reasons we don't quite know. In the case of age-related anosmias, it could be because the stem cells are just not doing their job replacing the cells that are naturally lost over time. One idea is that if we could harness the very stem cells that are in the noses of people who are losing smell, maybe we can figure out a way to restore function, by getting them to regenerate the cells that are lost."

Neurons (green) derived from a single stem cell in the olfactory epithelium of the nose. The magenta cells are support cells called sustentacular cells. Credit: Russell Fletcher & John Ngai, UC Berkeley

Tracking cell fate

Ngai, who directs the Functional Genomics Laboratory in UC Berkeley's California Institute for Quantitative Biosciences, focuses on the cells and regulatory molecules involved in our sense of smell. Olfactory cells in the nose are unusual in that they are part of the body's outer layer, or epithelium, but also part of the nervous system, incorporating neurons that connect directly with the smell centers in the brain.

His group has been working with adult olfactory stem cells that give rise to the neurons that sense odors and other cells, such as sustentacular cells, that support the neurons. A new technique for sequencing the RNA in a single cell has been revolutionary, Ngai said, allowing researchers to trace which stem cells in a densely packed tissue become specialized, based on the mRNA present in the cell, which indicates which genes are being expressed. Nevertheless, it is difficult to follow stem cells that can potentially differentiate into different types of cells.

Ngai's group teamed up with UC Berkeley statisticians and computer scientists - led by Sandrine Dudoit, a professor of biotstatistics and statistics, Elizabeth Purdom, a professor of statistics, and Nir Yosef, a professor of electrical engineering and computer sciences - to develop a way to analyze the experimental data and identify cells with similar RNA profiles, indicative of specific cell types and developmental states.

As a result, the team was able to trace the paths that cells take as they turn into sustentacular cells—which seems to be the default fate for olfactory stem cells—and into neurons and other types of cells. They also were able to identify a signaling pathway known as "Wnt" that triggers the olfactory stem cell to become a sensory neuron.

Ngai cautions that the immediate implications of the work are limited to animal models, which provide the necessary foundation for eventually addressing human anosmias. "But with this information, we now have a window into what controls the process and therefore a window into manipulating or coopting that process to stimulate regeneration" he said. "There has been a lot of work on Wnt signaling pathways, for example, so there are a lot of small-molecule drugs that could be tested to trigger a stem cell to mature into a neuron."

The sequencing and statistical techniques the team developed can also be used by others studying regulation of in other tissues, organ systems or organisms, he said.

Explore further: Neuroscientists find genetic trigger that makes stem cells differentiate in nose epithelia

Related Stories

Neural stem cells control their own fate

August 18, 2016

To date, it has been assumed that the differentiation of stem cells depends on the environment they are embedded in. A research group at the University of Basel now describes for the first time a mechanism by which hippocampal ...

Tracking nanodiamond-tagged stem cells

August 5, 2013

A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Biologists find how plants reconstitute stem cells

May 19, 2016

Stem cells are typically thought to have the intrinsic ability to generate or replace specialized cells. However, a team of biologists at NYU showed that regenerating plants can naturally reconstitute their stem cells from ...

Limited self-renewal of stem cells in the brain

March 11, 2015

Stem cells in the brain can produce neurons and are consequently seen as a hope for treatment. A team of researchers from the Helmholtz Zentrum München and Ludwig-Maximilians-Universität München (LMU) has now discovered ...

A Prkci gene keeps stem cells in check

October 31, 2015

When it comes to stem cells, too much of a good thing isn't wonderful: producing too many new stem cells may lead to cancer; producing too few inhibits the repair and maintenance of the body.

Recommended for you

Study identifies new malaria parasites in wild bonobos

November 21, 2017

Malaria parasites, although widespread among wild chimpanzees and gorillas, have not been detected in bonobos, a chimp cousin. Reasoning that previous studies may have missed infected bonobo populations, a team led by Beatrice ...

The strange case of the scuba-diving fly

November 20, 2017

More than a century ago, American writer Mark Twain observed a curious phenomenon at Mono Lake, just to the east of Yosemite National Park: enormous numbers of small flies would crawl underwater to forage and lay eggs, but ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.