Husker engineers craft microscopic heater-thermometer

May 23, 2017 by Scott Schrage
Credit: University of Nebraska-Lincoln

"It's like a tiny furnace."

Engineer Ming Han is describing one of his team's newest feats: a laser-heated, silicon-tipped fiber-optic that can approach 2,000 degrees Fahrenheit, going from to 300 degrees in fractions of a second.

And by "tiny," Han means microscopic – one-tenth of a millimeter in diameter, roughly the thickness of a sheet of paper.

The device's heating capability could find use in contexts that range from monitoring greenhouse gases to prepping specimens for biological research to producing micro-bubbles for medical or industrial applications. It also acts as a thermometer whose performance at extreme heat would allow it to monitor in the demanding environments of engines and power plants, Han said.

"We have an elegant sensor structure with a very efficient heating mechanism," said Han, associate professor of electrical and computer engineering. "In other devices, the heating element and the temperature-sensing element are generally two different elements. Here, we've integrated both into the same tiny structure."

The design evolved from Han's prior work on a fiber-optic temperature sensor suitable for oceanography. Like the new design, that sensor featured a microscopic silicon pillar attached to the end of fiber-optics – flexible glass strands that transmit light signals at extreme speeds. But the glue that bonded the silicon and fiber-optics would soften at roughly 200 degrees Fahrenheit, restricting its use at higher temperatures.

The team's paper-thin device going from room temperature to white-hot. Credit: Optics Letters / Guigen Liu

"Then we had a breakthrough," Han said.

After again bonding the fiber-optic and silicon pillar with glue, the team used an extremely hot arc of electric current – essentially a sustained bolt of lightning – to fuse another fiber-optic strand with the opposite side of the pillar. The process simultaneously softened the glue on the other side and detached the original fiber-optic strand, leaving just the newly fused device.

From there, Han's team fed two wavelengths of light through the fiber-optic – one a 980-nanometer laser that gets absorbed by the silicon, the other a 1550-nanometer wavelength that passes through it.

Because the absorbed laser produces heat, its remote-controlled power dictates the temperature of the device. Meanwhile, the broader wavelengths that enter the silicon get partially reflected by the two ends of the pillar and begin interfering with one another. Those interference patterns change with the 's temperature, making their readouts a precise and responsive thermometer.

Han and co-designer Guigen Liu, a postdoctoral researcher in electrical and computer engineering, said the device's ability to generate a broad swath of wavelengths in the near- to far-infrared range could prove especially useful in detecting gases based on how they interact with those waves. And the ability to gauge and adjust its temperature, Han said, lends the device a functional versatility unmatched by existing micro-heaters.

"We still have a lot of work to do to make it better," he said. "But this is a very promising technology that has a lot of exciting applications."

Explore further: New fiber-based sensor could quickly detect structural problems in bridges and dams

More information: Guigen Liu et al. Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C, Optics Letters (2017). DOI: 10.1364/OL.42.001412

Related Stories

Engineers develop next-gen temperature sensor

April 6, 2015

UNL engineers and the U.S. Naval Research Laboratory have designed a next-generation temperature sensor set to improve the measurement of oceanic dynamics that shape marine biology, climate patterns and military operations.

Recommended for you

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.