A fresh look inside the protein nano-machines

May 24, 2017, University of Geneva
The essential nano-mechanic features of proteins can be conveniently studied by a simplified geometry. Taking, for example, a cylinder, and asking for «evolution» to find a fluid channel (shown in blue) a multitude of realistic properties of real proteins appear naturally, and exhibit the advantage of conceptual, rather than detailed models of proteins. Credit: © UNIGE - Jean-Pierre Eckmann

Proteins digest food, and fight infections and cancer, and serve other metabolic functions. They are basically nano-machines, each one designed to perform a specific task. But how did they evolve to match those needs, and how did genes encode the structure and function of proteins? Researchers from the University of Geneva (UNIGE), Switzerland, the Institute for Basic Science, Korea, and the Rockefeller University, U.S., have conducted a study that tackles this question and explains the basic geometry of the gene-to-protein code by connecting proteins to properties of amorphous physical matter.

The full article appears in Physical Review X.

A protein is a chain made of 20 different kinds of amino acid with elaborate interactions, and unlike standard physical , proteins are selected by evolution. "The blueprint for protein synthesis is written in long DNA , but we show that only a small fraction of this huge information space is used to make the functional ," explains Jean-Pierre Eckmann, Professor at the Department of Theoretical Physics from the Faculty of Science of UNIGE.

Together with Prof. Tsvi Tlusty from the Center for Soft and Living Matter, Institute for Basic Science (IBS) in Korea and Prof. Albert Libchaber from the Rockefeller University in New York, Prof. Eckmann shows that the only changes in the code that matter are those occurring in the segment of the gene coding the mechanically relevant hinges of the nano-machine. The changes in other regions of this highly redundant code have no impact. "We are now using this new approach to understand the relation between the function and dynamics of several important proteins."

Explore further: Scientists design new protein structure

Related Stories

Ancient proteins studied in detail

May 8, 2017

How did protein interactions arise and how have they developed? In a new study, researchers have looked at two proteins which began co-evolving between 400 and 600 million years ago. What did they look like? How did they ...

Reading the genetic code depends on context

April 17, 2017

The so-called central dogma of molecular biology states the process for turning genetic information into proteins that cells can use. "DNA makes RNA," the dogma says, "and RNA makes protein." Each protein is made of a series ...

What happens to gene transcription during DNA damage?

February 17, 2017

It's well known that when the DNA in a cell is damaged, the cell responds by activating specific genes that help defend the integrity of its genome. But less well studied is the fact that the cell actually shuts down the ...

Recommended for you

Elephant and cow manure for making paper sustainably

March 21, 2018

It's likely not the first thing you think of when you see elephant dung, but this material turns out to be an excellent source of cellulose for paper manufacturing in countries where trees are scarce, scientists report. And ...

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 25, 2017
"basically nano-machines" well so are viruses and bacterium on and on

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.