How enzymes communicate

May 18, 2017, University of Freiburg
Electro-chemical coupling through protein super complexes: The calcium channel (Cav2) delivers calcium ions (Ca2+) that activate the enzyme NO synthase (NOS) for generation of the messenger NO. Credit: Bernd Fakler

The enzymes nitric oxide (NO) synthase (NOS1) and protein kinase C (PKC) play an important role in a variety of signal transfer processes in neurons of the brain, as well as in many cell types of other organs. Together with Prof. Dr. Bernd Fakler at the Institute of Physiology at the University of Freiburg, the scientists Dr. Cristina Constantin and Dr. Catrin Müller have shown for the first time that enzymes can be activated under physiological conditions through sole electrical stimulation of the cell membrane. Protein super complexes that rapidly transform electrical signals at the cell membrane into chemical signal processes inside the cell emerge through direct structural interaction of both enzymes with voltage-gated calcium channels. The researchers have presented their work in the current issue of the scientific journal Proceedings of the National Academy of Sciences (PNAS).

The Fakler group has previously shown that both calcium-dependent enzymes NOS1 and PKC are components of the protein nano-environment of certain voltage-gated calcium channels (Cav2-channels) in the brain. As yet, however, it was not know how these enzymes communicate with the calcium channels. The research group has now found that both enzymes are integrated into protein super complex with Cav2 channels. Within such Cav2-NOS1/PKC complexes NOS1 or PKC are anchored at the cytoplasmic side of the cell membrane and are placed at in the immediate vicinity of the pore. Upon excitation of the , the Cav2 channels open and deliver calcium ions to the cell cytoplasm, where they bind to both enzymes. Calcium binding activates the enzymes, which subsequently produce the diffusible second messengers NO or phosphorylate cytoplasmic target proteins.

Due to the proximity between channel and , electrical stimulations of less than a millisecond duration are required for effective electro-chemical coupling. The latter becomes maximal when the cell, instead of being stimulated by individual impulses, fires action potentials with a frequency of one hertz or more.

The Cav2-enzyme super complexes not only guarantee an ultrafast and reliable electro-chemical coupling. They also ensure that signal transduction remains locally restricted, that is, within an area less than a few nanometers around the Cav2 channels. This local restriction guarantees that the enzymes only initiate specific cellular processes, while other signalling pathways, including cell death, are prevented. In addition, the researchers' experiments highlighted the physiological mechanism for activation of NOS1 and PKC thus presenting an alternative to the widely used synthetic activators, such as NO donors or diacylglycerols.

Bernd Fakler is the director of Department II of the Institute of Physiology and area coordinator of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

Explore further: Researchers connect molecular function to high blood pressure, diseases

More information: Cristina E. Constantin et al, Identification of Cav2–PKCβ and Cav2–NOS1 complexes as entities for ultrafast electrochemical coupling, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1616394114

Related Stories

Calcium channels team up to activate excitable cells

May 18, 2016

Voltage-gated calcium channels open in unison, rather than independently, to allow calcium ions into and activate excitable cells such as neurons and muscle cells, researchers with UC Davis Health System and the University ...

New insights into sodium channel structure

April 4, 2017

Northwestern Medicine scientists have mapped the complete structure of a voltage-gated sodium channel, proteins in the membrane of cells that play an important role in many diseases. The findings were published in Nature ...

New molecular map reveals how cells spew out potassium

December 23, 2016

New research from Roderick MacKinnon's Laboratory of Molecular Neurobiology and Biophysics at The Rockefeller University has determined, for the first time, the complete structure of an ion channel that plays an important ...

Adaptor proteins control ion channel gating mechanism

February 10, 2017

Ion channels are proteins that form pores in cellular membranes, which can be opened and shut like lock gates to allow the passage of electrically charged atoms (ions). Members of this class of proteins are crucial components ...

Recommended for you

How human brains became so big

May 23, 2018

The human brain is disproportionately large. And while abundant grey matter confers certain intellectual advantages, sustaining a big brain is costly—consuming a fifth of energy in the human body.

Rehabilitating lactate: From poison to cure

May 23, 2018

George Brooks has been trying to reshape thinking about lactate—in the lab, the clinic and on the training field—for more than 40 years, and finally, it seems, people are listening. Lactate, it's becoming clear, is not ...

Chimpanzee calls differ according to context

May 23, 2018

An important question in the evolution of language is what caused animal calls to diversify and to encode different information. A team of scientists led by Catherine Crockford of the Max Planck Institute for Evolutionary ...

How a cell knows when to divide

May 23, 2018

How does a cell know when to divide? We know that hundreds of genes contribute to a wave of activity linked to cell division, but to generate that wave new research shows that cells must first grow large enough to produce ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.