Proving Einstein right using the most sensitive Earth rotation sensors ever made

May 10, 2017, Springer

Einstein's theory of gravity, also referred to as General Relativity, predicts that a rotating body such as the Earth partially drags inertial frames along with its rotation. In a study recently published in EPJ Plus, a group of scientists based in Italy suggests a novel approach to measuring what is referred to as frame dragging. Angela Di Virgilio of the National Institute of Nuclear Physics, INFN, in Pisa, Italy, and her colleagues propose using the most sensitive type of inertial sensors, which incorporate ring lasers as gyroscopes, to measure the absolute rotation rate of the Earth.

The experiment aims to measure the absolute rotation with respect to the local inertial frame, which is what is referred to as frame dragging. In principle, the ring laser should show one rotation around the Earth's axis every 24 hours. However, should observation by reference to fixed stars in the sky show a slightly different rate of rotation, the difference can be attributed to frame dragging.

The authors' proposed experiment, called GINGER, requires two ring lasers to provide a reference measurement. It suggests comparing experimental GINGER data with the kinetic Earth rate independently measured by the International Earth Rotation System Service (IERS). According to the authors, their proposed solution can accurately test the frame dragging effect at 1%.

This is a vast improvement compared to previous experiments, such as the 2011 Stanford Gyroscope Experiment, Gravity Probe B (GPB), which agreed with General Relativity's prediction for the frame dragging with an estimated 19% margin of error. Or the 2016 measurement of the dragging of the plane of an orbiting satellite, using laser ranged satellites like the satellite LARES, which boasted a 5% margin of error. The authors expect that, ultimately, the satellite-based approach could even deliver accuracy below the 1% error measurement threshold.

Explore further: 'Going deep' to measure Earth's rotational effects

More information: Angela D. V. Di Virgilio et al, GINGER: A feasibility study, The European Physical Journal Plus (2017). DOI: 10.1140/epjp/i2017-11452-6

Related Stories

'Going deep' to measure Earth's rotational effects

March 14, 2017

Researchers in Italy hope to measure Earth's rotation using a laser-based gyroscope housed deep underground, with enough experimental precision to reveal measurable effects of Einstein's general theory of relativity. The ...

Does the universe have a rest frame?

March 21, 2017

Physics is sometimes closer to philosophy when it comes to understanding the universe. Donald Chang from Hong Kong University of Science and Technology, China, attempts to elucidate whether the universe has a resting frame. ...

Probing gravity

July 30, 2012

( -- Einstein's theory of relativity is remarkable not only because it is so successful in explaining seemingly bizarre observations (like the bending of starlight) or because it has assembled a coherent picture ...

Relativity of rotational motion confirmed

May 12, 2016

It has been one hundred years since the publication of Einstein's general theory of relativity in May 1916. In a paper recently published in EPJ Plus, Norwegian physicist Øyvind Grøn from the Oslo and Akershus University ...

2016 will be one second longer

July 6, 2016

On December 31, 2016, a "leap second" will be added to the world's clocks at 23 hours, 59 minutes 59 seconds Coordinated Universal Time (UTC). This corresponds to 6:59:59 pm Eastern Standard Time, when the extra second will ...

Recommended for you

Shedding light on the mystery of the superconducting dome

March 20, 2018

University of Groningen physicists, and colleagues from Nijmegen and Hong Kong, have induced superconductivity in a monolayer of tungsten disulfide. By using an increasing electric field, they were able to show how the material ...

Neutrons help demystify multiferroic materials

March 19, 2018

Materials used in electronic devices are typically chosen because they possess either special magnetic or special electrical properties. However, an international team of researchers using neutron scattering recently identified ...

Designing diamonds for medical imaging technologies

March 19, 2018

Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. This brings the new technology one step closer to enhancing biosensing applications, such as magnetic brain imaging. The advantages of ...

Taking MRI technology down to micrometer scales

March 19, 2018

Millions of magnetic resonance imaging (MRI) scans are performed each year to diagnose health conditions and perform biomedical research. The different tissues in our bodies react to magnetic fields in varied ways, allowing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.