'Going deep' to measure Earth's rotational effects

March 14, 2017, American Institute of Physics
The location of the GINGERino ring laser gyroscope at the underground laboratories of the INFN in Gran Sasso, Italy. Credit: Belfi et al.

Researchers in Italy hope to measure Earth's rotation using a laser-based gyroscope housed deep underground, with enough experimental precision to reveal measurable effects of Einstein's general theory of relativity. The ring laser gyroscope (RLG) technology enabling these Earth-based measurements provide, unlike those made by referencing celestial objects, inertial rotation information, revealing fluctuations in the rotation rate from the grounded reference frame.

A group from the Italian National Institute for Nuclear Physics' (INFN) Laboratori Nazionali del Gran Sasso (LNGS) are working with a research program aimed at measuring the gyroscopic precession Earth undergoes due to a relativistic effect called the Lense-Thirring effect. This program, called Gyroscopes in General Relativity (GINGER), would eventually use an array of such highly sensitive RLGS. For now, they have successfully demonstrated its prototype, GINGERino, and acquired a host of additional seismic measurements necessary in their efforts.

In this week's journal Review of Scientific Instruments, the group reports their successful installation of the single-axis GINGERino instrument inside the INFN's subterranean laboratory LNGS, and its ability to detect local ground rotational motion.

Ultimately, GINGER aims to measure Earth's rotation rate vector with a relative accuracy of better than one part per billion to see the miniscule Lense-Thirring effects.

"This effect is detectable as a small difference between the Earth's rotation rate value measured by a ground based observatory, and the value measured in an inertial reference frame," said Jacopo Belfi, lead author and a researcher working for the Pisa section of INFN. "This small difference is generated by the Earth's mass and angular momentum and has been foreseen by Einstein's general theory of relativity. From the experimental point of view, one needs to measure the Earth rotation rate vector with a relative accuracy better than one part per billion, corresponding to an absolute rotation rate resolution of 10-14 [radians per second]."

The GINGERino ring laser gyroscope, which is a square cavity with a side length of 3.6 meters. Credit: Belfi et al.

The underground placement of these systems is essential for getting far enough away from external disturbances from hydrology, temperature or barometric pressure changes to carry out these types of sensitive measurements.

This pilot prototype is expected to reveal unique information about geophysics, but, according to Belfi, "underground installations of large RLGs, free of surface disturbances, may also provide useful information about geodesy, the branch of science dealing with the shape and area of Earth."

The ultimate goal for GINGERino is to achieve a relative precision of at least one part per billion, within a few hours' time, to integrate with the less precise information of Earth's changing rotation provided by global positioning system data and the astronomically based measurements of the International Earth Rotation System.

"RLGs are essentially active optical interferometers in ring configuration," Belfi said. "Our interferometers are typically made of three or four mirrors that form a closed loop for two optical beams counter propagating along the loop. Due to the Sagnac effect, a ring interferometer is an extremely accurate angular velocity detector. It's essentially a gyroscope."

The group's approach enabled the first deep underground installation of an ultrasensitive large-frame RLG capable of measuring the Earth's with a maximum resolution of 30 picorads/second.

Radiofrequency discharge of the GINGERino ring laser. A helium-neon plasma is generated in the middle of one side of the ring through a pyrex capillary. Credit: Belfi et al.

"One peculiarity of the GINGERino installation is that it's intentionally located within a high seismicity area of central Italy," Belfi said. "Unlike other large RLG installations, GINGERino can actually explore the seismic rotations induced by nearby earthquakes."

One of the biggest challenges during GINGERino's installation was controlling the natural relative humidity, which was above 90 percent.

"With this humidity level, long-term operation of GINGERino's electronics wouldn't be viable," Belfi said. "So to maneuver around this problem, we enclosed the RLG inside an isolation chamber and increased the internal temperature of the chamber via a set of infrared lamps supplied with a constant voltage."

By doing so, the group was able to drop the relative humidity down to 60 percent. "It didn't significantly degrade the natural thermal stability of the underground location, which allows us to keep GINGERino's cavity length stable to within one laser wavelength (633 nanometers) for several days," he said.

GINGERino is now operating, along with seismic equipment provided by the Italian Institute of Geophysics and Volcanology, as a rotational seismic observatory.

"GINGERino and one co-located broadband seismometer make it possible to retrieve, via a single station, information about the seismic surface wave's phase velocity that in standard seismology requires using large arrays of seismometers," said Belfi.

Explore further: Scaling up gyroscopes: From navigation to measuring the Earth's rotation

More information: "Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso," DOI: 10.1063/1.4977051

Related Stories

2016 will be one second longer

July 6, 2016

On December 31, 2016, a "leap second" will be added to the world's clocks at 23 hours, 59 minutes 59 seconds Coordinated Universal Time (UTC). This corresponds to 6:59:59 pm Eastern Standard Time, when the extra second will ...

Onsala Twin Telescopes ready for the world

February 14, 2017

Two new radio telescopes have been built at Onsala Space Observatory on Sweden's west coast, and on 18 May 2017 they will be inaugurated. The Onsala Twin Telescopes are part of an international network of radio telescopes ...

Recommended for you

Converting heat into electricity with pencil and paper

February 19, 2018

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive ...

Bringing a hidden superconducting state to light

February 16, 2018

A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). When cooled to a certain temperature and with certain concentrations of barium, ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

nikola_milovic_378
Mar 15, 2017
This comment has been removed by a moderator.
434a
5 / 5 (3) Mar 15, 2017
How can I get the address of this institution, which wants to prove something that Einstein invented without any evidence by using the law of nature.


http://www.lngs.i...contacts
Post up your email to them and let us know how you get on, any replies would be good to see.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.