Making biological drugs with spider silk protein

May 23, 2017
Jumping spider. Credit: Lena Holm

Researchers at Karolinska Institutet in Sweden have managed to synthesise lung surfactant, a drug used in the care of preterm babies, by mimicking the production of spider silk. Animal studies reveal it to be just as effective as the biological drugs currently in clinical use. The study is published in Nature Communications.

Surfactant revolutionised the care of preterm babies by reducing the surface tension in their pulmonary alveoli and allowing them to be inflated at the moment of birth. Curosurf, the most globally widespread , was developed by scientists at Karolinska Institutet in the 1970s and 1980s. The drug is produced by the isolation of proteins from pig lungs, a process that is expensive, complicated and potentially risky. Researchers at Karolinska Institutet and their colleagues from the University of Riga amongst other institutions, have now developed a surfactant drug that can be produced much more simply and cheaply using spider protein.

"The manufacturing process is based on the method spiders use to keep their extremely easily aggregated proteins soluble for silk-spinning," explains Professor Jan Johansson at Karolinska Institutet's Department of Neurobiology, Care Sciences and Society. "We chose to produce surfactant protein C because it is probably the world's most aggregation-inclined protein."

By applying this method, the researchers have managed to produce a range of potential biological drugs using the part of the spider protein that ensures that the proteins remain soluble, namely the N-terminal domain.

"We had bacteria produce this part of the protein and then linked it to different drug candidates," says docent Anna Rising at Karolinska Institutet's Department of Neurobiology, Care Sciences and Society who co-led the study with Professor Johansson.

The researchers also compared their synthetic lung surfactant with the biological analogue currently on the market and found it equally effective at reducing the in an animal model of neonate respiratory disorders.

"Since this production method is much simpler and cheaper, it might one day be possible to use our synthetic lung surfactant to treat more lung diseases than just ," adds Professor Johansson. "The method will also hopefully enable the production of other biological drugs."

Explore further: Preterm birth linked to higher risk of heart failure

More information: Nina Kronqvist et al. Efficient protein production inspired by how spiders make silk, Nature Communications (2017). DOI: 10.1038/ncomms15504

Related Stories

Preterm birth linked to higher risk of heart failure

May 22, 2017

Babies born preterm run a higher risk of heart failure during childhood and adolescence than those born at full term, researchers at Karolinska Institutet in Sweden report. The registry-based study is published in The Journal ...

Hope for new treatment for Huntington's disease

February 20, 2017

Researchers working at Karolinska Institutet in Sweden and University of Southern Denmark have managed to produce short synthetic DNA analogues – oligonucleotides – that bind directly to the gene that is mutated in Huntington's ...

Recommended for you

The birth of a new protein

October 20, 2017

A yeast protein that evolved from scratch can fold into a three-dimensional shape—contrary to the general understanding of young proteins—according to new research led by the University of Arizona.

Discovery lights path for Alzheimer's research

October 19, 2017

A probe invented at Rice University that lights up when it binds to a misfolded amyloid beta peptide—the kind suspected of causing Alzheimer's disease—has identified a specific binding site on the protein that could facilitate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.