Researchers locate control center for DNA breaks during cell division

April 17, 2017 by Stephanie Dutchen, Harvard Medical School
Researchers locate control center for DNA breaks during cell division
Cell nuclei light up in the reproductive organ of a worm. Modifying a particular protein (green) by adding a phosphate group (red) sends a signal to stop breaking DNA. Credit: Priah Nadarajan

Breaks in DNA can wreak havoc in the body, giving rise to cancer and other health problems. Yet sometimes cells rupture their own DNA for a good reason.

During meiosis, when cells divide to become sperm and eggs, making and repairing DNA breaks helps lock together pairs of so they can exchange genetic material and continue on their reproductive journey.

But even "good" breaks need to be controlled before they get out of hand, and so, once chromosomes have been paired up, something tells the DNA-snapping machinery to shut down. What exactly gives the command, however, has eluded researchers—until now.

Studying the reproductive organs of tiny worms called Caenorhabditis elegans, a team of Harvard Medical School scientists has identified a trio of proteins that staff the DNA- control center. If the same proteins operate the controls in humans, the researchers say, the finding could suggest new ways to rein in runaway DNA breaks throughout the body to avert cancer, infertility, miscarriages and birth defects.

Genetics professor Monica Colaiácovo, postdoctoral fellow Saravanapriah Nadarajan and colleagues reported their discoveries in the journal eLife.

Researchers locate control center for DNA breaks during cell division
Credit: Priah Nadarajan

The team found that a pair of enzymes, polo-like kinases 1 and 2, sense when two chromosomes attach at a DNA break site. The enzymes then begin to sound the "no more breaks needed" alarm by sticking a chemical tag onto proteins called SYP-4. SYP-4 is part of a zipper-like structure that holds chromosome pairs together during meiosis.

The researchers watched through a microscope as a wave of this tagging, known as phosphorylation, started at the break site, shown above in green, and spread out, shown in pink, in both directions along the zipper until it reached the ends of the chromosomes.

"We think this makes the chromosomes less accessible to the machinery that makes the DNA breaks," said Colaiácovo.

The researchers discovered that phosphorylation not only blocks additional DNA breaks, it also helps stabilize the zipper.

Researchers locate control center for DNA breaks during cell division
A cell nucleus rotates in the gonad of a C. elegans worm. Credit: Priah Nadarajan and Talley Lambert
"Having a more stable zipper probably helps disseminate the 'stop' signal," said Colaiácovo.

Further experiments showed that "when you mess up the ability to modify SYP-4, the cells never stop making double-strand breaks," Colaiácovo added. As a result, worms with uncontrolled DNA breaks had problems with their eggs that led to infertility or sterility, Nadarajan revealed.

Having answered a fundamental question about how DNA breaks are controlled, the researchers are now wondering whether their discoveries apply to humans.

A look at sperm and egg precursor cells in mice and humans turned up a promising lead: Proteins that form the equivalent zipper are similarly phosphorylated by polo-like kinases.

Explore further: Researchers find chemical tag that locks chromosomes together during meiosis 

More information: Saravanapriah Nadarajan et al. Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop, eLife (2017). DOI: 10.7554/eLife.23437

Related Stories

New steps in the meiosis chromosome dance

January 23, 2017

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that's how sperm and eggs are made. And when meiosis doesn't work properly, it can lead to ...

How breaks in DNA are repaired

February 2, 2017

A team of researchers from the biology department at TU Darmstadt has discovered that the processes for repairing DNA damage are far more complex than previously assumed. The ends of breaks in the double helix are not just ...

Hotspots found for chromosome gene swapping

November 29, 2007

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.