Establishing the boundaries of quantum secure communications

April 26, 2017 by Alistair Keely
Establishing the boundaries of quantum secure communications
Credit: quantumcommshub.net

Scientists at the University of York's Centre for Quantum Technology have made an important breakthrough in the theory of quantum secure communications.

Today's classical communications, such as email or phone, are potentially vulnerable to eavesdroppers as conventional data encryption is based on the factorisation of large integers, an operation which is computationally hard on a classical computer but easily solvable on a quantum .

Recently, Google said that large quantum computers are only five years from commercial exploitability, therefore setting a deadline to current classical methods for private . Scientists say the solution comes from the field of (QKD).

QKD uses particles, such as photons, to enable two remote parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt confidential messages. The security is not computational but based on a fundamental law of nature, the uncertainty principle.

Maximum rates

Based on this idea, secure quantum networks are being built on a large scale in the UK and other countries, with China playing an important role and also leading the exploration of quantum satellite communication.

In such a scenario it is crucial to understand the ultimate limits of QKD, in terms of maximum rates, or capacities, at which two parties can distribute secret keys in a point-to-point connection.

In a paper published in Nature Communications, scientists have established these capacities through the most important communication lines, including optical fibres.

Protocols

Professor Stefano Pirandola of the University's Department of Computer Science said: "This is a breakthrough result because it establishes the ultimate performance that any point-to-point protocol of QKD cannot surpass.

"Setting these limits is extremely important for both theoreticians and experimentalists, because they provide benchmarking for new theoretical protocols and actual experimental implementations."

The study was funded by the EPSRC via the UK quantum communication hub.

Explore further: Team finds the 'key' to quantum network solution

More information: Stefano Pirandola et al. Fundamental limits of repeaterless quantum communications, Nature Communications (2017). DOI: 10.1038/ncomms15043

Related Stories

All quantum communication involves nonlocality

April 1, 2016

Researchers of CWI, University of Gdansk, Gdansk University of Technology, Adam Mickiewicz University and the University of Cambridge have proven that quantum communication is based on nonlocality. They show that whenever ...

Quantum fingerprinting surpasses classical limit

July 5, 2016

(Phys.org)—As the saying goes, no two fingerprints are alike, and the same is true for quantum fingerprints. Just as a human fingerprint is only a fraction of the size of a person, yet can be used to distinguish between ...

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

An ultradilute quantum liquid made from ultra-cold atoms

December 14, 2017

ICFO researchers created a novel type of liquid 100 million times more dilute than water and 1 million times thinner than air. The experiments, published in Science, exploit a fascinating quantum effect to produce droplets ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.