New technology platform propels the use of 'organs-on-chips'

March 8, 2017, Brigham and Women's Hospital

A research team led by scientists from Brigham and Women's Hospital has developed a novel technology platform that enables the continuous and automated monitoring of so-called "organs-on-chips"—tiny devices that incorporate living cells to mimic the biology of bona fide human organs.

One of the major technical challenges in using organs-on-chips is that current methods for measuring their responses are done mostly by hand, making it difficult to conduct long-term studies that seek to closely model and responses. Moreover, these measurements require the removal of relatively large volumes of fluid. If repeated several times, they can deplete the liquid in the system, rendering it inoperable.

The scientists, led by first author Yu Shrike Zhang together with senior author Ali Khademhosseini, created several innovations to address these challenges. These include the development of a biochemical sensor that can continuously and accurately measure different substances released by the organ-like system, as well as enhancements that allow the use of multiple physical sensors, which monitor features such as temperature, oxygen levels, and pH values.

In addition, they engineered a central router or "breadboard" that controls fluid flow to different components of the network. Equipped with a series of channels and valves, this breadboard functions as kind of circulatory system that enables researchers to program when and how often liquid runs through specific organs or sensors. The modular design further allows convenient replacement of individual modules when necessary. Zhang and his colleagues were able to use this approach to integrate a variety of different sensors.

"Our system is highly flexible and modular, so it can be readily adapted for use with different types of pre-existing chips and research applications," explains Zhang. "We hope this will expand the use of organs-on-chips in a variety of contexts, including drug screening and drug toxicity studies," adds Khademhosseini.

Explore further: Google glass meets organs-on-chips

More information: Yu Shrike Zhang et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1612906114

Related Stories

Google glass meets organs-on-chips

March 18, 2016

Investigators from Brigham and Women's Hospital (BWH) have developed hardware and software to remotely monitor and control devices that mimic the human physiological system. Devices known as organs-on-chips allow researchers ...

3-D-printed organ-on-a-chip with integrated sensors

October 24, 2016

Harvard University researchers have made the first entirely 3D-printed organ-on-a-chip with integrated sensing. Built by a fully automated, digital manufacturing procedure, the 3D-printed heart-on-a-chip can be quickly fabricated ...

Reverse engineering human biology with organs-on-chips

March 10, 2016

"Organs-on-Chips," added last May to the collection of the Museum of Modern Art in New York City and winner of the 2015 Design Award from the London Design Museum, have kept their "classical" design over the years, but have ...

Recommended for you

Pushing lithium ion batteries to the next performance level

December 13, 2018

Conventional lithium ion batteries, such as those widely used in smartphones and notebooks, have reached performance limits. Materials chemist Freddy Kleitz from the Faculty of Chemistry of the University of Vienna and international ...

Uber filed paperwork for IPO: report

December 8, 2018

Ride-share company Uber quietly filed paperwork this week for its initial public offering, the Wall Street Journal reported late Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.