Superluminous supernovae

March 10, 2017, Harvard-Smithsonian Center for Astrophysics
Superluminous Supernovae
An artist's conception of a magnetar, with its magnetic field lines. Astronomers studying the superluminous supernova Gaia6apd have concluded in part from the behavior of its extraordinary ultraviolet emission that it is powered by an internal magnetar. Credit: Robert S. Mallozzi, UAH/NASA MSFC

Supernovae, the explosive deaths of massive stars, are among the most momentous events in the cosmos because they disburse into space all of the chemical elements that were produced inside their progenitor stars, including the elements essential for making planets and life. Their bright emission also enables them to be used as probes of the very distant universe. Not least, supernovae are astrophysical laboratories for the study of very energetic phenomena. One class of supernovae consists of single stars whose mass is at least eight solar masses as they finish their lives.

A typical supernova shines about as brightly as ten billion Suns at its peak. In the last decade, a new type of supernova was discovered that is ten to one hundred times more luminous than a normal massive stellar collapse supernova, and today over a dozen of these superluminous supernovae (SLSN) have been seen. Astronomers are in agreement that these objects come from the collapse of , but their tremendous luminosities cannot be explained by the usual physical mechanisms invoked. Instead, the debate has centered on whether the excess emission results from an external source, for example the interaction of material ejected from the explosion with a circumstellar shell, or instead by some kind of powerful internal engine such as a highly magnetized, spinning neutron star.

The SLSN "Gaia6apd" was discovered by the European Gaia satellite, and at a distance of about one and one-half billion light-years it is the second-closest SLSN discovered to date. It is also special in another way: it is extraordinarily bright in the ultraviolet, nearly four times brighter than the next nearest known SLSN despite the fact that in the optical both have comparable luminosities. CfA astronomers Matthew Nicholl, Edo Berger, Peter Blanchard, Dan Milisavljevic, and Peter Challis and their colleagues used facilities at the CfA's MMT and Fred Lawrence Whipple Observatory to track the changing emission of this source from immediately after its discovery and continuing for one hundred and fifty days. The long time coverage revealed that the UV emission eventually faded to a level typical for normal , providing some clues to the mechanisms responsible. The scientists review all the known data and conclude that the most likely source is an internal central engine like a rapidly spinning neutron star. They also emphasize the key role that UV wavelengths played in diagnosing the mechanisms and urge that future studies of SLSN include UV coverage.

Explore further: The ultraviolet diversity of supernovae

More information: M. Nicholl et al. An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine, The Astrophysical Journal (2017). DOI: 10.3847/2041-8213/aa56c5

Related Stories

The ultraviolet diversity of supernovae

September 28, 2016

Supernovae, the explosive deaths of massive stars, are among the most momentous events in the cosmos because they disburse into space all of the chemical elements that were produced inside their progenitor stars, including ...

Imaging an expanding supernova shell

December 7, 2015

Supernovae, the explosive deaths of massive stars, are among the most momentous events in the cosmos because they disburse into space all of the chemical elements that were produced inside their progenitor stars, including ...

X-ray illumination of supernova ejecta

June 24, 2011

(PhysOrg.com) -- Supernovae are the explosive deaths of massive stars, cataclysms that disburse into space the chemical elements produced by nuclear reactions inside the progenitor stars. Understanding chemical enrichment ...

Recommended for you

Calibrating cosmic mile markers

December 11, 2018

New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the universe is expanding ...

Team finds evidence for carbon-rich surface on Ceres

December 10, 2018

A team led by Southwest Research Institute has concluded that the surface of dwarf planet Ceres is rich in organic matter. Data from NASA's Dawn spacecraft indicate that Ceres's surface may contain several times the concentration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.