Probing seven worlds with NASA's James Webb Space Telescope

March 2, 2017 by Laura Betz
This artist's concept shows what each of the TRAPPIST-1 planets may look like, based on available data about their sizes, masses and orbital distances. Credit: NASA/JPL-Caltech

With the discovery of seven earth-sized planets around the TRAPPIST-1 star 40 light years away, astronomers are looking to the upcoming James Webb Space Telescope to help us find out if any of these planets could possibly support life.

"If these have atmospheres, the James Webb Space Telescope will be the key to unlocking their secrets," said Doug Hudgins, Exoplanet Program Scientist at NASA Headquarters in Washington. "In the meantime, NASA's missions like Spitzer, Hubble, and Kepler are following up on these planets."

"These are the best Earth-sized planets for the James Webb Space Telescope to characterize, perhaps for its whole lifetime," said Hannah Wakeford, postdoctoral fellow at NASA's Goddard Space Flight Center in Greenbelt, Maryland. At Goddard, engineers and scientists are currently testing the Webb telescope which will be able to view these planets in the infrared, beyond the capabilities we currently have. "The Webb telescope will increase the information we have about these planets immensely. With the extended wavelength coverage we will be able to see if their atmospheres have water, methane, carbon monoxide/dioxide and/or oxygen."

When hunting for a potentially life-supporting planet, you need to know more than just the planet's size or distance from its star. Detecting the relative proportions of these molecules in a planet's atmosphere could tell researchers whether a planet could support life.

"For thousands of years, people have wondered, are there other planets like Earth out there? Do any support life?" said Sara Seager, astrophysicst and planetary scientist at MIT. "Now we have a bunch of planets that are accessible for further study to try to start to answer these ancient questions."

This rendering of the James Webb Space Telescope is current to 2015. Upon request we can provide a high-resolution image without a background. Credit: Credits: Northrop Grumman

Launching in 2018, one of Webb's main goals is to use spectroscopy, a method of analyzing light by separating it into distinct wavelengths which allows one to identify its chemical components (by their unique wavelength signatures) to determine the atmospheric components of alien worlds. Webb will especially seek chemical biomarkers, like ozone and methane, that can be created from biological processes. Ozone, which protects us from harmful ultraviolet radiation here on Earth, forms when oxygen produced by photosynthetic organisms (like trees and phytoplankton) synthesizes in light. Because ozone is largely dependent on the existence of organisms to form, Webb will look for it in alien atmospheres as a possible indicator of life. It will also be able to look for methane which will help determine a biological source of the oxygen that leads to ozone accumulation.

The discovery of the planets in the TRAPPIST-1 system means that Webb will be able to use its immense capabilities on a relatively nearby system. Researchers recently identified three promising planets in the TRAPPIST-1 system - e, f and g - which orbit in the and would make good candidates for Webb to study. Depending upon their atmospheric composition, all three of these Earth-like exoplanets could have the appropriate conditions for supporting liquid water. Because the planets orbit a star that is small, the signal from those planets will be relatively large, and just strong enough for Webb to detect atmospheric features. Shawn Domagal-Goldman, an astrobiologist at NASA's Goddard Space Flight Center said, "Two weeks ago, I would have told you that Webb can do this in theory, but in practice it would have required a nearly perfect target. Well, we were just handed three nearly perfect targets."

The number of planets in the system will also enable new research in the field of comparative planetology, which uncovers fundamental planetary processes by comparing different worlds. "This is the first and only system to have seven , where three are in the habitable zone of the star," said Wakeford. "It is also the first system bright enough, and small enough, to make it possible for us to look at each of these planets' atmospheres. The more we can learn about exoplanets, the more we can understand how our own solar system came to be the way it is. With all seven planets Earth-sized, we can look at the different characterisitics that make each of them unique and determine critical connections between a planet's conditions and origins."

NASA is exploring the solar system and beyond to better understand the universe and our place in it. We're looking to answer age-old questions, like how did our universe begin and evolve; how did galaxies, stars, and planets come to be; and are we alone.

The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Explore further: Temperate earth-sized worlds found in extraordinarily rich planetary system (Update)

Related Stories

Image: Final mirror installed in James Webb Space Telescope

February 8, 2016

Inside a massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland the James Webb Space Telescope team used a robotic am to install the last of the telescope's 18 mirrors onto the telescope structure.

Volcanic hydrogen spurs chances of finding exoplanet life

February 27, 2017

Hunting for habitable exoplanets now may be easier: Cornell University astronomers report that hydrogen pouring from volcanic sources on planets throughout the universe could improve the chances of locating life in the cosmos.

Recommended for you

To keep Saturn's A ring contained, its moons stand united

October 17, 2017

For three decades, astronomers thought that only Saturn's moon Janus confined the planet's A ring - the largest and farthest of the visible rings. But after poring over NASA's Cassini mission data, Cornell astronomers now ...

Webcam on Mars Express surveys high-altitude clouds

October 17, 2017

An unprecedented catalogue of more than 21 000 images taken by a webcam on ESA's Mars Express is proving its worth as a science instrument, providing a global survey of unusual high-altitude cloud features on the Red Planet.

Microbes leave 'fingerprints' on Martian rocks

October 17, 2017

Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist ...

Astronomers identify new asynchronous short period polar

October 16, 2017

(Phys.org)—An international team of astronomers led by Gagik H. Tovmassian of the National Autonomous University of Mexico (UNAM) has uncovered new details into the nature of a cataclysmic variable known as IGR J19552+0044. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.