Volcanic hydrogen spurs chances of finding exoplanet life

February 27, 2017
Credit: Cornell University

Hunting for habitable exoplanets now may be easier: Cornell University astronomers report that hydrogen pouring from volcanic sources on planets throughout the universe could improve the chances of locating life in the cosmos.

Planets located great distances from stars freeze over. "On frozen planets, any potential life would be buried under layers of ice, which would make it really hard to spot with telescopes," said lead author Ramses Ramirez, research associate at Cornell's Carl Sagan Institute. "But if the surface is warm enough - thanks to volcanic hydrogen and atmospheric warming - you could have life on the surface, generating a slew of detectable signatures."

Combining the greenhouse warming effect from hydrogen, water and carbon dioxide on planets sprinkled throughout the cosmos, distant stars could expand their by 30 to 60 percent, according to this new research. "Where we thought you would only find icy wastelands, planets can be nice and warm - as long as volcanoes are in view," said Lisa Kaltenegger, Cornell professor of astronomy and director of the Carl Sagan Institute.

Their research, "A Volcanic Hydrogen Habitable Zone," published today in the Astrophysical Journal Letters.

The idea that hydrogen can warm a planet is not new, but an Earth-like planet cannot hold onto its hydrogen for more than a few million years. Volcanoes change the concept. "You get a nice big warming effect from volcanic hydrogen, which is sustainable as long as the volcanoes are intense enough," said Ramirez, who suggested the possibility that these planets may sustain detectable life on their surface.

A very light gas, hydrogen also "puffs up" planetary atmospheres, which will likely help scientists detect signs of life. "Adding hydrogen to the air of an exoplanet is a good thing if you're an astronomer trying to observe potential life from a telescope or a space mission. It increases your signal, making it easier to spot the makeup of the atmosphere as compared to planets without hydrogen," said Ramirez.

In our solar system, the habitable zone extends to 1.67 times the Earth-sun distance, just beyond the orbit of Mars. With volcanically sourced hydrogen on planets, this could extend the solar system's habitable zone reach to 2.4 times the Earth-sun distance - about where the asteroid belt is located between Mars and Jupiter. This research places a lot of planets that scientists previously thought to be too cold to support detectable life back into play.

"We just increased the width of the habitable zone by about half, adding a lot more planets to our 'search here' target list," said Ramirez.

Atmospheric biosignatures, such as methane in combination with ozone - indicating life - will likely be detected by the forthcoming, next-generation James Webb Space Telescope, launching in 2018, or the approaching European Extremely Large Telescope, first light in 2024.

Last week, NASA reported finding seven Earth-like planets around the star Trappist-1. "Finding multiple planets in the habitable zone of their host star is a great discovery because it means that there can be even more potentially habitable planets per star than we thought," said Kaltenegger. "Finding more rocky planets in the habitable zone - per star - increases our odds of finding ."

With this latest research, Ramirez and Kaltenegger have possibly added to that number by showing that habitats can be found, even those once thought too cold, as long as volcanoes spew enough hydrogen. Such a volcanic habitable zone might just make the Trappist-1 system contain four habitable zone , instead of three. "Although uncertainties with the orbit of the outermost Trappist-1 planet 'h' means that we'll have to wait and see on that one," said Kaltenegger.

Explore further: Hunting for hidden life on worlds orbiting old, red stars

More information: "A Volcanic Hydrogen Habitable Zone," Astrophysical Journal Letters, 2017. DOI: 10.3847/2041-8213/aa60c8

Related Stories

Hunting for hidden life on worlds orbiting old, red stars

May 16, 2016

All throughout the universe, there are stars in varying phases and ages. The oldest detected Kepler planets (exoplanets found using NASA's Kepler telescope) are about 11 billion years old, and the planetary diversity suggests ...

A catalog of habitable zone exoplanets

January 18, 2017

The last two decades have seen an explosion of detections of exoplanets, as the sensitivity to smaller planets has dramatically improved thanks especially to the Kepler mission. These discoveries have found that the frequency ...

Finding infant earths and potential life just got easier

December 4, 2014

Among the billions and billions of stars in the sky, where should astronomers look for infant Earths where life might develop? New research from Cornell University's Institute for Pale Blue Dots shows where - and when - infant ...

Astronomers search for signs of life on Wolf 1061 exoplanet

January 19, 2017

Is there anybody out there? The question of whether Earthlings are alone in the universe has puzzled everyone from biologists and physicists to philosophers and filmmakers. It's also the driving force behind San Francisco ...

Recommended for you

Bright areas on Ceres suggest geologic activity

December 13, 2017

If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn ...

Major space mystery solved using data from student satellite

December 13, 2017

A 60-year-old mystery regarding the source of some energetic and potentially damaging particles in Earth's radiation belts is now solved using data from a shoebox-sized satellite built and operated by University of Colorado ...

Spanning disciplines in the search for life beyond Earth

December 13, 2017

The search for life beyond Earth is riding a surge of creativity and innovation. Following a gold rush of exoplanet discovery over the past two decades, it is time to tackle the next step: determining which of the known exoplanets ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.