Discovery of a new regulatory protein provides new tool for stem cell engineering

March 28, 2017, University of California - San Diego
An artistic rendering showing that the interaction between SMARCAD1 and H3R26Cit modified histones can be skillfully manipulated -- as if in a game of pinball -- to regulate the switch of embryonic stem cells from the naïve to the primed pluripotent state. Credit: Victor Leshyk

Bioengineers at the University of California San Diego have discovered a protein that regulates the switch of embryonic stem cells from the least developed "naïve" state to the more developed "primed" state. This discovery sheds light on stem cell development at a molecular level.

The findings were published online in Cell Reports on March 28.

"This discovery provides a fine-tuning knob for the stem cell engineering toolkit," said Sheng Zhong, a bioengineering professor at the UC San Diego Jacobs School of Engineering and the study's senior author. "A number of previously identified regulatory proteins can be considered as rough-tuning knobs that result in greater changes in cellular behavior. We need both tools to precisely set into the desired cellular state so that they can carry out the functions that we desire."

The researchers discovered that the protein, called SMARCAD1, interacts with a specific type of modification, called histone citrullination (H3R26Cit), to prevent the spontaneous switch from the naïve to the primed pluripotent state. By suppressing SMARCAD1 from interacting with H3R26Cit, researchers were able to induce this switch. They also found that the stem cells with suppressed SMARCAD1 expression remained pluripotent. "This finding offers an approach to fine tune the stem cells between two cellular states corresponding to two early developmental stages," said Jia Lu, a bioinformatics Ph.D. student in Zhong's research group who co-authored this work.

Zhong and his team first used protein arrays composed of hundreds of histone peptides harboring distinct post-transcriptional modifications, and found that SMARCAD1 specifically interacts with the H3R26Cit modification. They then used a technology called ChIP-seq to assay genome-wide distributions of SMARCAD1 binding as well different kinds of histone modifications, and found that SMARCAD1 specifically binds to H3R26Cit modified histones in the entire genome.

Researchers also conducted experiments in which they suppressed the expression of SMARCAD1, and a separate set of experiments in which they suppressed a more general form of H3R26Cit called H3Cit. In both experiments, they observed cellular changes consistent with the switch from the naïve to the primed stem cell state, providing more evidence of SMARCAD1's regulatory role in stem cell development.

Moving forward, the team is investigating whether SMARCAD1 also plays a role in regulating the behavior or cancer .

Explore further: Vitamins and aminoacids regulate stem cell biology

More information: Cell Reports, DOI: 10.1016/j.celrep.2017.02.070

Related Stories

Vitamins and aminoacids regulate stem cell biology

February 16, 2017

An International Reserach Team coordinated by Igb-Cnr has discovered a key role of vitamins and amino acids in pluripotent stem cells. The research is published in Stem Cell Reports, and may provide new insights in cancer ...

Gene "bookmarking" regulates the fate of stem cells

December 7, 2016

A protein that stays attached on chromosomes during cell division plays a critical role in determining the type of cell that stem cells can become. The discovery, made by EPFL scientists, has significant implications for ...

Mutation linked with the absence of fingerprints

August 4, 2011

Scientists have identified a mutation that might underlie an extremely rare condition, called "adermatoglyphia," which causes people to be born without any fingerprints. The research, published by Cell Press online August ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.