Nerve wrapping nanofiber mesh promoting regeneration

February 28, 2017
Conceptual diagram showing a nanofiber mesh incorporating vitamin B12 and its application to treat a peripheral nerve injury. Credit: National Institute for Materials Science

A research team consisting of Mitsuhiro Ebara, MANA associate principal investigator, Mechanobiology Group, NIMS, and Hiroyuki Tanaka, assistant professor, Orthopaedic Surgery, Osaka University Graduate School of Medicine, developed a mesh which can be wrapped around injured peripheral nerves to facilitate their regeneration and restore their functions. This mesh incorporates vitamin B12—a substance vital to the normal functioning of nervous systems—which is very soft and degrades in the body. When the mesh was applied to injured sciatic nerves in rats, it promoted nerve regeneration and recovery of their motor and sensory functions. The team is currently considering clinical application of the mesh to treat peripheral nerve disorders such as carpal tunnel syndrome (CTS).

Artificial nerve conduits have been developed in the past to treat , but they merely form a cross-link to the injury site and do not promote faster . Moreover, their application is limited to relatively few patients suffering from a complete loss of nerve continuity. Vitamin B12 has been known to facilitate nerve regeneration, but oral administration of it has not proven to be very effective, and no devices capable of delivering vitamin B12 directly to affected sites had been available. Therefore, it had been hoped to develop such medical devices to actively promote nerve regeneration in the many patients who suffer from nerve injuries but have not lost nerve continuity.

The NIMS-Osaka University joint research team recently developed a special mesh that can be wrapped around an injured nerve which releases vitamin B12 (methylcobalamin) until the injury heals. By developing very fine mesh fibers (several hundred nanometers in diameter) and reducing the crystallinity of the fibers, the team successfully created a very soft mesh that can be wrapped around a nerve. This mesh is made of a biodegradable plastic which, when implanted in animals, is eventually eliminated from the body. In fact, experiments demonstrated that application of the mesh directly to injured sciatic nerves in rats resulted in regeneration of axons and recovery of motor and within six weeks.

The team is currently negotiating with a pharmaceutical company and other organizations to jointly study clinical application of the as a medical device to treat peripheral disorders, such as CTS.

This study was supported by the JSPS KAKENHI program (Grant Number JP15K10405) and AMED's Project for Japan Translational and Clinical Research Core Centers (also known as Translational Research Network Program).

This research was published online in the April 2017 issue of Acta Biomaterialia on February 5, 2017.

Explore further: Laser therapy on the repair of a large-gap transected sciatic nerve in a reinforced nerve conduit

More information: Koji Suzuki et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model, Acta Biomaterialia (2017). DOI: 10.1016/j.actbio.2017.02.004

Related Stories

3-D printed guide helps regrow complex nerves after injury

September 18, 2015

A national team of researchers has developed a first-of-its-kind, 3D-printed guide that helps regrow both the sensory and motor functions of complex nerves after injury. The groundbreaking research has the potential to help ...

Hydrogel scaffold helps repair injured spinal cord

July 20, 2016

Spinal cord injuries can be devastating because the damaged nerves do not regenerate on their own, which often leads to permanent impairment. Scientists have been investigating methods to encourage regrowth, but so far there ...

Race to nerve regeneration: faster is better

October 3, 2011

A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(Phys.org)—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.