Controlling friction levels through on/off application of laser light

February 20, 2017, National Institute for Materials Science
Controlling Friction Levels through On/Off Application of Laser Light
Figure. Measurement of friction force between molecules and a substrate while the molecules are being irradiated by laser light.

A National Institute for Materials Science (NIMS) research group discovered that the amount of friction force between organic molecules and a sapphire substrate in a vacuum can be changed repeatedly by starting and stopping laser light irradiation.

A NIMS research group led by Masahiro Goto, Distinguished Chief Researcher, Center for Green Research on Energy and Environmental Materials, and Michiko Sasaki, postdoctoral researcher, Center for Materials Research by Information Integration (currently a postdoctoral fellow at the University of Tokyo) discovered that the amount of between and a sapphire substrate in a vacuum can be changed repeatedly by starting and stopping irradiation. This discovery could potentially lead to the development of technology enabling the movement of micromachines and other small driving parts to be controlled.

The performance of micromachines—used as moving components in small devices such as acceleration sensors and gyroscopes—is greatly affected by adhesion force (the attractive force between two or more materials that stick to each other). Adhesion force in a micromachine increases the friction force. Since increased friction force seriously impedes the movement of moving components, it is necessary to maintain a low level of adhesion force. In addition, if the level of friction force can be controlled, it may be feasible to control the movement of micromachines, leading to expansion of their use and enhancement of their functions. A great deal of attention was previously drawn to techniques enabling silicon-based materials, a major micromachine material, to be coated with diamond-like carbon, self-assembled monolayers, or fluorine-containing organic films in order to reduce friction force and thereby improve the movement of micromachines. However, it was difficult to control friction coefficients of two adjacent parts by coating them because the coefficients are determined predominantly by the materials used in these parts.

The research group invented a completely novel method of controlling friction force between using light irradiation. Specifically, the group irradiated a localized area of a cantilever coated with organic molecules with laser light and observed that the friction force between the coated cantilever and a sapphire substrate increased by 15% using a scanning probe microscopic technique known as friction force mode. Moreover, the group was able to increase and decrease the friction force repeatedly by switching the laser light on and off.

These findings may lead to the development of techniques to control the movement of micromachines and contribute to the identification of basic friction mechanism. While control of friction force by light at the nano level was achieved in this study, the technique also may be applicable to control of friction phenomena at the macro level.

Explore further: ZnO-coated high-performance bearings developed

More information: Michiko Sasaki et al. Control of friction force by light observed by friction force microscopy in a vacuum, Applied Physics Express (2017). DOI: 10.7567/APEX.10.015201

Related Stories

ZnO-coated high-performance bearings developed

August 26, 2016

A research group consisting of National Institute for Materials Science (NIMS) and Tohoku University developed a coating technique using a zinc oxide (ZnO) material, an environment-friendly, low-friction material developed ...

Finnish researchers find explanation for sliding friction

May 29, 2012

Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.