Speeding up the rate of reaction of a potential catalyst for energy storage

January 25, 2017
PNNL chemist Molly O'Hagan explores different catalysts inspired by nature, looking for one that runs fast and efficiently. Credit: PNNL/Eric Francavilla

One reason we can't bottle summer sunshine and save the solar energy for rainy days is that we don't have an efficient way to store it. Nature stores energy in chemical bonds, like when plants photosynthesize our food. Researchers are trying to design catalysts based on inexpensive metals to store energy like nature does.

The in hydrogen gas, for example, could power fuel cells, , or generators. Using a natural catalyst from bacteria for inspiration, researchers have now developed the fastest synthetic catalyst for hydrogen production—producing 45 million molecules per second. Instead of a costly metal, this catalyst uses inexpensive, abundant nickel at its busy core.

Although the catalyst requires more energy to run than a conventional platinum catalyst, the insight garnered from this result might eventually help make hydrogen fuel in an environmentally friendly, affordable way, the researchers report in the chemistry journal Angewandte Chemie International Edition.

"The next thing we'll work on is making it more efficient," said chemist Molly O'Hagan at the Department of Energy's Pacific Northwest National Laboratory. "We still have to feed it too much electricity to produce the hydrogen."

The team at PNNL has been developing a nickel-based catalyst modeled on an enzyme from nature called a hydrogenase for several years. Back in 2011, working in the Center for Molecular Electrocatalysis, a DOE Energy Frontier Research Center, they made a synthetic catalyst that was 10 times faster than the natural one. That natural one clocked in at 100,000 per second.

The video will load shortly
Credit: Pacific Northwest National Laboratory

As they worked on the catalyst development, the scientists would test their catalysts in reactions by combining the catalyst and acids in different media. One thing they noticed was that the synthetic catalyst produced hydrogen faster in a viscous liquid as opposed to a free-flowing liquid.

"We used this medium that was like pancake syrup and saw very fast rates," said O'Hagan. "The catalyst has arms that move around to position the pieces of the chemical reaction. Normally they are flopping around like crazy and the pieces don't always hit the right target. When this happens, the arms can actually get stuck in a position where the catalyst can't put the pieces together at all. We thought that this thick syrup might be slowing down the flopping, letting the arms put the pieces together more efficiently."

To test this hypothesis, the team designed the catalyst to have longer arms that would drag and slow down the flopping. They tested different arm lengths and found the longer the arms, the faster the catalyst produced hydrogen molecules.

They also measured how fast the arms were swinging around. The longer the arms, the slower the movement, allowing them to attribute the faster production to the slower arm movements. Like excited children playing catch, calming down a bit lets them hit their mark more often.

"This work gave us some insight into the movement of the , and how to control that movement to make it more efficient," said O'Hagan.

Explore further: Reaction to convert solar energy to fuel is 50 times faster with a simple change in the solvent

More information: Allan Jay P. Cardenas et al. Controlling Proton Delivery through Catalyst Structural Dynamics, Angewandte Chemie International Edition (2016). DOI: 10.1002/anie.201607460

Related Stories

Recommended for you

Sea sponges stay put with anchors that bend but don't break

June 22, 2017

Sea sponges known as Venus' flower baskets remain fixed to the sea floor with nothing more than an array of thin, hair-like anchors made essentially of glass. It's an important job, and new research suggests that it's the ...

Custom-built molecule shows promise as anti-cancer therapy

June 22, 2017

Scientists at the University of Bath funded by Cancer Research UK have custom-built a molecule which stops breast cancer cells from multiplying in laboratory trials, and hope it will eventually lead to a treatment for the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.