Rolling out an e-sticker revolution

January 3, 2017, King Abdullah University of Science and Technology
Pressure-sensitive 'e-stickers' contain all the functionality of traditional silicon circuits but can be fabricated into complex, flexible shapes such as butterflies. Credit: © 2016 KAUST

The healthcare industry forecasts that future wellbeing will be monitored by wearable, wirelessly networked sensors. Manufacturing such devices could become much easier using decal electronics. A KAUST-developed process prints these high-performance, silicon-based computers on soft, sticker-like surfaces that can be attached anywhere.

Fitting electronics on to the asymmetric contours of human bodies demands a re-think of traditional computer fabrication. One approach is to print circuit patterns on materials like polymers or cellulose using liquid ink made from conductive molecules. This technique enables high-speed, roll-to-roll assembly of devices and packaging at low costs.

Flexible printed circuits, however, require conventional silicon components to handle applications such as digitizing analog signals. Such rigid modules can create uncomfortable hot spots on the body and increase device weight.

For the past four years, Muhammad Hussain and his team from the KAUST Computer, Electrical and Mathematical Science and Engineering Division have investigated ways to improve the flexibility of silicon materials while retaining their performance.

"We are trying to integrate all device components—sensors, data management electronics, battery, antenna—into a completely compliant system," explained Hussain. "However, packaging these discrete modules on soft substrates is extremely difficult."

Searching for potential electronic skin applications, the researchers developed a sensor containing narrow strips of aluminum foil that changes conductivity at different bending states.

The devices, which could monitor a patient's breathing patterns or activity levels, feature high-mobility zinc oxide nanotransistors on silicon wafers thinned down lithographically to microscale dimensions for maximum flexibility. Using 3-D printing techniques, the team encapsulated the silicon chips and foils into a polymer film backed by an adhesive layer.

Hussain and his colleagues found a way to make the e-sticker sensors work in multiple applications. They used inkjet printing to write conductive wiring patterns on surfaces including paper and clothing. Custom-printed decals were then attached or re-adhered to each location.

"You can place a pressure-sensing decal on a tire to monitor it while driving and then peel it off and place it on your mattress to learn your sleeping patterns," said Galo Torres Sevilla, first author of the findings and a KAUST Ph.D. graduate.

The robust performance and high-throughput manufacturing potential of decal electronics could yield a number of innovative sensor deployments, noted Hussain.

"I believe that electronics have to be democratized—simple to learn and easy to implement. Electronic decals are a right step in that direction," Hussain said.

Explore further: Gentle sensors for diagnosing brain disorders

More information: Galo A. Torres Sevilla et al, Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems, Advanced Materials Technologies (2016). DOI: 10.1002/admt.201600175

Related Stories

Gentle sensors for diagnosing brain disorders

September 30, 2016

Flexible, low-cost sensor technology leading to safer and improved diagnoses and treatment of brain disorders has been developed by Saudi Arabia's King Abdullah University of Science and Technology (KAUST) scientists.

Paper skin sensors for environmental monitoring

February 22, 2016

Everyday materials found in the kitchen, such as aluminum foil, sticky note paper, sponges and tape, have been used by a team of electrical engineers from KAUST to develop a low-cost sensor that can detect external stimuli, ...

Recommended for you

Cryptocurrency rivals snap at Bitcoin's heels

January 14, 2018

Bitcoin may be the most famous cryptocurrency but, despite a dizzying rise, it's not the most lucrative one and far from alone in a universe that counts 1,400 rivals, and counting.

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.