Nanodiscs deliver personalized cancer therapy to immune system

December 26, 2016

Researchers at the University of Michigan have had initial success in mice using nanodiscs to deliver a customized therapeutic vaccine for the treatment of colon and melanoma cancer tumors.

"We are basically educating the immune system with these nanodiscs so that can attack cancer cells in a personalized manner," said James Moon, the John Gideon Searle assistant professor of and biomedical engineering.

Personalized immunotherapy is a fast-growing field of research in the fight against cancer.

The therapeutic cancer vaccine employs nanodiscs loaded with tumor neoantigens, which are unique mutations found in tumor cells. By generating T-cells that recognize these specific neoantigens, the targets cancer mutations and fights to eliminate cancer cells and prevent tumor growth.

Unlike preventive vaccinations, therapeutic cancer vaccines of this type are meant to kill established cancer cells.

"The idea is that these vaccine nanodiscs will trigger the immune system to fight the existing cancer cells in a personalized manner," Moon said.

The nanodisc technology was tested in mice with established melanoma and colon cancer tumors. After the vaccination, twenty-seven percent of T-cells in the blood of the mice in the study targeted the tumors.

When combined with immune checkpoint inhibitors, an existing technology that amplifies T-cell tumor-fighting responses, the nanodisc technology killed tumors within 10 days of treatment in the majority of the mice. After waiting 70 days, researchers then injected the same mice with the same , and the tumors were rejected by the immune system and did not grow.

"This suggests the 'remembered' the for long-term immunity," said Rui Kuai, U-M doctoral student in pharmaceutical sciences and lead author of the study.

"The holy grail in is to eradicate tumors and prevent future recurrence without systemic toxicity, and our studies have produced very promising results in mice," Moon said.

The technology is made of extremely small, synthetic high density lipoproteins measuring roughly 10 nanometers. By comparison, a human hair is 80,000 to 100,000 nanometers wide.

"It's a powerful vaccine technology that efficiently delivers vaccine components to the right cells in the right tissues. Better delivery translates to better T-cell responses and better efficacy," said study co-senior author Anna Schwendeman, U-M assistant professor of pharmacy.

The next step is to test the nanodisc technology in a larger group of larger animals, Moon said.

EVOQ Therapeutics, a new U-M spinoff biotech company, has been founded to translate these results to the clinic. Lukasz Ochyl, a doctoral student in pharmaceutical sciences, is also a co-author.

The study, "Designer vaccine nanodiscs for personalized immunotherapy," is scheduled for advance online publication Dec. 26 on the Nature Materials website.

Explore further: Fighting cancer with the power of immunity

More information: Designer vaccine nanodiscs for personalized cancer immunotherapy, Nature Materials, nature.com/articles/doi:10.1038/nmat4822

Related Stories

Fighting cancer with the power of immunity

October 24, 2016

Harnessing the body's own immune system to destroy tumors is a tantalizing prospect that has yet to realize its full potential. However, a new advance from MIT may bring this strategy, known as cancer immunotherapy, closer ...

Recommended for you

Nanostructures taste the rainbow

June 28, 2017

Engineers at Caltech have for the first time developed a light detector that combines two disparate technologies—nanophotonics, which manipulates light at the nanoscale, and thermoelectrics, which translates temperature ...

Injectable plant-based nanoparticles delay tumor progression

June 28, 2017

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles—that normally ...

A levitated nanosphere as an ultra-sensitive sensor

June 28, 2017

Sensitive sensors must be isolated from their environment as much as possible to avoid disturbances. Scientists at ETH Zurich have now demonstrated how to remove from and add elementary charges to a nanosphere that can be ...

Researchers create very small sensor using 'white graphene'

June 28, 2017

Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors ...

Ruthenium rules for new fuel cells

June 28, 2017

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.