Fractional disturbance observers could help machines stay on track

December 23, 2016, Chinese Association of Automation

Roads are paved with obstacles than can interfere with our driving. They can be as easy to avoid or adjust to as far-away debris or as hard to anticipate as strong gusts of wind. As self-driving cars and other autonomous vehicles become a reality, how can researchers make sure these systems remain in control under highly uncertain conditions? A team of automation experts may have found a way. Using a branch of mathematics called fractional calculus, the researchers created algorithmic disturbance observers that make on-the-fly calculations to put a disturbed system back on track.

Disturbance observers are not new to the world of automation. For decades, these algorithms have played an important role in controlling railways, robots and hard drives. That's because, unlike other algorithms that aim to minimize interference, disturbance observers rely only on the signals that go into and come out of a system; they know nothing about the interfering signal itself.

However, automation algorithms have begun to perceive the world around us in a new way. Engineering processes previously described using Newtonian physics and calculus are being recast in the light of so-called . This more general form of calculus is better equipped to model the real processes that affect how automated systems operate, such as battery discharge and the memory-like behavior of electrical circuits.

Using fractional calculus, the team of researchers created a suite of observers that could accurately estimate disturbances of varying complexity. When tested on a model of a gas turbine, two observers clearly outperformed the rest. And when combined, the pair operated well under the harshest conditions, keeping close track of highly fluctuating disturbance signals. Credit: Chinese Association of Automation

Using fractional calculus, the researchers created a suite of algorithmic observers that could accurately estimate disturbances of varying complexity. When tested on a gas turbine model, the two observers clearly outperformed older algorithms. And when combined, the pair operated well under the harshest conditions, keeping close track of highly fluctuating disturbance signals.

Disturbance monitoring, however, is only half the battle. Once the signal associated with a disturbance is carefully measured, it has to be eliminated. Future studies will be dedicated to figuring out how disturbance observers can be coupled with other control elements to make machines operate even more smoothly.

Explore further: Getting the most out of fractional models

More information: html.rhhz.net/ieee-jas/html/20160412.htm

Related Stories

Getting the most out of fractional models

October 28, 2016

Machines make our lives easier in many ways. Whether it's a smart thermostat that learns when to turn the heat on or automatic brakes, machines traffic in the language of classical calculus. Classical calculus is good enough ...

Scientists simplify model for human behavior in automation

October 14, 2016

Human unpredictability is a problem in the automated human-machine systems people use every day. Scientists from Nanjing Institute of Technology's School of Automation in China and the University of California, Merced's School ...

Sleep disturbance linked to esophageal hypersensitivity

December 5, 2016

(HealthDay)—For patients with gastroesophageal reflux disease (GERD), sleep disturbance is associated with enhanced heartburn perception to capsaicin infusion, according to a study published online Nov. 29 in the Journal ...

Recommended for you

Catalyst advance removes pollutants at low temperatures

March 25, 2019

Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.