Researchers make one-way street for light

November 29, 2016 by Ans Hekkenberg, Fundamental Research on Matter (FOM)
Credit: Suus van den Akker

Researchers at FOM institute AMOLF and the University of Texas at Austin have created a compact one-way street for light. That is remarkable because light waves can generally move in both directions inside a material. Optical chips could benefit from the new functionality, as it enables a new way to route data encoded in the light signals.

The published their results in Nature Communications on 29 November.

How does it work?

Although the effect is not usually noticeable, light that hits an object exerts a small force, slightly 'pushing' the object it illuminates. In some cases, light can even cause a small object to move. The researchers used this fact to produce a one-way street for light. They achieved this by temporarily trapping light that passes through an in a perfectly formed ring with a diameter smaller than that of a human hair. In such a ring, light can easily circulate 100,000 times, which considerably strengthens the force it exerts on the walls. As a result, the ring expands slightly. The researchers subsequently introduced a second light wave with a slightly different colour than the first. Due to the interference of both , the ring vibrates, but only if the two waves move through the ring in the same direction. As the system has been designed in such a way that the optical fibre only allows light to pass through if the ring vibrates, light from the opposite direction is blocked.

With the help of an optical fibre (purple), the researchers were able to trap light in a ring. When two different colours (red and light green) start to circulate in the same direction in the ring, then the ring starts to vibrate. As a result of this, light is allowed to pass through. As the dark green light moving in the opposite direction does not cause the ring to vibrate, light in that direction is blocked. Credit: Fundamental Research on Matter (FOM)

The demonstrated principles could be very important for ensuring that light moves in the right direction in optical chips. Present-day data is already largely transported in the form of light. The processing of information in optical circuits on chips has major advantages compared to electronic alternatives, especially as light uses far less energy. However, a missing component on these to date has been an optical isolator: a component that allows waves to pass through in one direction, but blocks waves in the other direction, thereby controlling the transport of signals. The experiment demonstrates a prototype of a highly compact isolator, which can also be actively switched on and off using .

Theory and follow-up research

The researchers translated the laboratory observations into a general theory of 'optomechanical isolation'. This theory describes and predicts that implementation of one-way traffic will be possible in a wide range of different systems. This includes systems that allow even faster processing of optical signals. Furthermore, the researchers demonstrate that the isolator could also work for , which could make its application in future quantum computers possible.

Explore further: Nanoscale one-way street for light

More information: Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Freek Ruesink, Mohammad-Ali Miri, Andrea Alù and Ewold Verhagen. Nature Communications (2016), DOI: 10.1038/NCOMMS13662

Related Stories

Nanoscale one-way street for light

December 14, 2015

An optical device at nanoscale which allows light to pass in only one direction has been developed at TU Wien (Vienna). It consists of alkali atoms which are coupled to ultrathin glass fibres.

Warm regards for confined light in nanophotonic circuits

September 12, 2016

Researchers at the Debye Institute for Nanomaterials Science, together with colleagues from the University of Twente and Thales Research and Technology (France), have found a non-invasive technique to measure the intensity ...

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Light-optics research could improve medical imaging

October 13, 2015

A team of researchers, including The University of Queensland's Dr Joel Carpenter, has developed echo-less lights that could improve medical imaging inside the body, leading to less-intrusive surgery.

Recommended for you

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Nov 29, 2016
Wouldn't this device be more properly described as an "optical diode"?
not rated yet Nov 29, 2016
Not really, since it effectively requires two inputs (though these two inputs can come over the same line)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.