NA64 hunts the mysterious dark photon

NA64 hunts the mysterious dark photon
An overview of the NA64 experimental set-up at CERN. NA64 hunts down dark photons, hypothetic dark matter particles. Credit: Maximilien Brice/CERN

One of the biggest puzzles in physics is that eighty-five percent of the matter in our universe is "dark": it does not interact with the photons of the conventional electromagnetic force and is therefore invisible to our eyes and telescopes. Although the composition and origin of dark matter are a mystery, we know it exists because astronomers observe its gravitational pull on ordinary visible matter such as stars and galaxies.

Some theories suggest that, in addition to gravity, could interact with visible matter through a new force, which has so far escaped detection. Just as the is carried by the photon, this dark force is thought to be transmitted by a particle called "dark" photon which is predicted to act as a mediator between visible and dark matter.

"To use a metaphor, an otherwise impossible dialogue between two people not speaking the same language (visible and dark matter) can be enabled by a mediator (the ), who understands one language and speaks the other one," explains Sergei Gninenko, spokesperson for the NA64 collaboration.

CERN's NA64 experiment looks for signatures of this visible-dark interaction using a simple but powerful physics concept: the conservation of energy. A beam of electrons, whose initial energy is known very precisely, is aimed at a detector. Interactions between incoming electrons and atomic nuclei in the detector produce visible photons. The energy of these photons is measured and it should be equivalent to that of the electrons. However, if the dark photons exist, they will escape the detector and carry away a large fraction of the initial electron energy.

View of the NA64 experiment set-up. Credit: Christoph Madsen/Noemi Caraban/CERN

Therefore, the signature of the dark photon is an event registered in the detector with a large amount of "missing energy" that cannot be attributed to a process involving only ordinary particles, thus providing a strong hint of the dark photon's existence.

If confirmed, the existence of the dark photon would represent a breakthrough in our understanding the longstanding mystery.

Provided by CERN

Citation: NA64 hunts the mysterious dark photon (2016, November 25) retrieved 8 September 2024 from https://phys.org/news/2016-11-na64-mysterious-dark-photon.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

3 knowns and 3 unknowns about dark matter

1454 shares

Feedback to editors