Newly discovered phenomenon could affect materials in batteries and water-splitting devices

October 3, 2016, Brookhaven National Laboratory
These images, taken from a transmission electron microscope, show a perovskite material oscillating as it is exposed to water vapor and a beam of electrons. Credit: Courtesy of the researchers

When one type of an oxide structure called perovskite is exposed to both water vapor and streams of electrons, it exhibits behavior that researchers had never anticipated: The material gives off oxygen and begins oscillating, almost resembling a living, breathing organism.

The phenomenon was "totally unexpected" and may turn out to have some practical applications, says Yang Shao-Horn, the W.M. Keck Professor of Energy at MIT. She is the senior author of a paper describing the research that is being published today in the journal Nature Materials. The paper's lead author is Binghong Han PhD '16, now a postdoc at Argonne National Laboratory.

Perovskite oxides are promising candidates for a variety of applications, including solar cells, electrodes in rechargeable batteries, water-splitting devices to generate hydrogen and oxygen, fuel cells, and sensors. In many of these uses, the materials would be exposed to , so a better understanding of their behavior in such an environment is considered important for facilitating the development of many of their potential applications.

Like cooking polenta

When a particular kind of perovskite known as BSCF—after the chemical symbols for its constituents barium, strontium, cobalt, and iron—is placed in a vacuum in a transmission electron microscope (TEM) to observe its behavior, Shao-Horn says, "nothing happens, it's very stable." But then, "when you pump in low pressure water vapor, you begin to see the oxide oscillate." The cause of that oscillation, clearly visible in the TEM images, is that " form and shrink in the oxide. It's like cooking a polenta, where bubbles form and then shrink."

The behavior was so unexpected in part because the oxide is solid and was not expected to have the flexibility to form growing and shrinking bubbles. "This is incredible," Shao-Horn says. "We think of oxides as brittle," but in this case the bubbles expand and contract without any fracturing of the material. And in the process of bubble formation, "we are actually generating oxygen gas," she says.

What's more, the exact frequency of the oscillations that are generated by the forming and bursting bubbles can be precisely tuned, which could be a useful feature for some potential applications. "The magnitude and frequency of the oscillations depend on the pressure" of the vapor in the system, Shao-Horn says. And since the phenomenon also depends on the presence of electron beams, the reaction can be switched on and off at will by controlling those beams.

The effect is not just a surface reaction, she says. The water molecules, which become ionized (electrically charged) by the , actually penetrate deep into the perovskite. "These ions go inside the bulk material, so we see oscillations coming from very deep," she says.

This experiment used the unique capabilities of an "environmental" at Brookhaven National Laboratory, part of a U.S. Department of Energy-supported facility there. With this instrument, the researchers directly observed the interaction between the perovskite material, water vapor, and streams of electrons, all at the atomic scale.

Keeping its shape

Despite all the pulsating motion and the penetration of ions in and out of the solid crystalline material, when the reaction stops, the material "still has its original perovskite structure," Han says.

Because this is such a new and intriguing finding, Shao-Horn says, "we still don't understand in full detail" exactly how the reactions take place, so the research is continuing in order to clarify the mechanisms. "It's an unexpected result that opens a lot of questions to address scientifically."

While the initial experiments used electron beams, Shao-Horn questions if such behavior could also be induced by shining a bright light, which could be a useful approach for water splitting and purification—for example, using sunlight to generate hydrogen fuel from water or remove toxins from water.

While most catalysts promote reactions only at their surfaces, the fact that this reaction penetrates into the bulk of the material suggests that it could offer a new mechanism for catalyst designs, she says.

Explore further: Highly active catalysts could be key to improved energy storage in fuel cells and advanced batteries

More information: Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution, Nature Materials, DOI: 10.1038/nmat4764

Related Stories

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Highly efficient oxygen catalyst found

October 28, 2011

A team of researchers at MIT has found one of the most effective catalysts ever discovered for splitting oxygen atoms from water molecules — a key reaction for advanced energy-storage systems, including electrolyzers, ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

BrettC
5 / 5 (1) Oct 03, 2016
I wonder if this action could clear buildup in use as electrodes. If so it could keep the electrodes from fouling.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.