Serendipitous observation may lead to more efficient solar cells and new gas sensors

July 27, 2016, University of Groningen

While investigating perovskite crystals, University of Groningen scientists made an observation that could make perovskite solar cells more efficient. It could also lead to new sensors for oxygen and water vapor. The results were published online by the journal Science Advances on 27 July.

Photovoltaic cells based on hybrid perovskites were first introduced in 2009, and they rapidly became as efficient as standard . They now convert light into electricity at about 22 percent efficiency. 'And the theoretical limit is about 33 percent', says Maria Antonietta Loi, Professor of Photophysics and Optoelectronics at the University of Groningen.

However, part of the electric charge disappears into what are known as traps. This happens in both silicon and perovskite, and reduces the efficiency of . So it would be nice to know more about traps and how to avoid them. A serendipitous observation by University of Groningen scientists provided new insight into hybrid perovskite traps.

Charge eaters

While investigating , postdoc Hong-Hua Fang placed a crystal in a vacuum chamber. 'The reason was to cool it down', Fang explains. While he pumped out the air, he left on a laser that excites the crystal. This laser light produces electronic charges in the crystal, which emit light when they recombine. In this instance the crystal should have emitted green light, but surprisingly, when the air was removed from around it, the disappeared too. Fang: 'But when we let the air in again, the light emission was restored.' So apparently, without air, most charges disappear into the traps.

This video shows the change in light emission due to charge recombination in a perovskite crystal, excited by laser light. Credit: Loi lab / University of Groningen

Atmospheric gases somehow blocked the activity of the 'charge eaters' in the crystals, so Fang set out to investigate. He exposed crystals to different types of gas and discovered that oxygen and deactivated the traps, while gases such as nitrogen, carbon dioxide or argon had no effect. The next step was to localize the traps, which he did by using two different laser lights to excite either the surface or the interior of the crystals. He discovered that the traps were mainly on the surface.

Sensor

'We assume that there are positively charged groups of traps on the surface because of the crystal structure of the ', explains Loi. The next step is to find a way to eliminate them. Water vapor or oxygen work well, but in the long run they can damage the material, so they are not an option. Fang is busy testing alternatives. If he succeeds, he will further enhance the efficiency of . 'The number of in the material that we used for these experiments was relatively low, but we estimate that by eliminating them, we could go from an efficiency of 22 percent to one equaling or surpassing that of crystalline silicon, which is 25 percent.'

There is another possible application for the findings. Loi: 'As the effect of oxygen and water vapor on perovskite is reversible, it would make a nice sensor.' Perovskite crystals inside sealed food packaging could detect the presence of harmful oxygen. 'Just shine a laser on the sensor, and if it lights up you know the seal has been broken.'

Explore further: Perovskite solar cells surpass 20 percent efficiency

More information: H.H. Fang, S. Adjokatse, H. Wei, J. Yang, G. R. Blake, J. Huang, J. Even, M. A. Loi, Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances 2, e1600534 (2016). DOI: 10.1126/sciadv.1600534

Related Stories

Watering solar cells makes them grow... in power

July 27, 2016

Perovskite solar cells are the rising star in the photovoltaic landscape. Since their invention, less than ten years ago, their efficiency has doubled twice and it is now over 22% - an astonishing result in the renewable ...

Flipping crystals improves solar-cell performance

July 6, 2016

In a step that could bring perovskite crystals closer to use in the burgeoning solar power industry, researchers from Los Alamos National Laboratory, Northwestern University and Rice University have tweaked their crystal ...

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.