Key epigenetic switch mechanism in gene regulation discovered

October 13, 2016 by Brian Wallheimer, Purdue University

A Purdue University study pinpointed an epigenetic mechanism that is a key factor in how genes are switched on and off.

Both genetic and regulate human gene expression. External or environmental factors, such as carcinogens from tobacco smoking, disrupt normal epigenetic regulation. This leads to changes in gene expression, which results in the production of .

Humaira Gowher, a Purdue assistant professor of biochemistry, is interested in the mechanisms that control by directing epigenetic regulators such as DNA methylation to specific portions of a gene.

Gene expression is controlled by its called promoters and enhancers. When cells need to express a specific gene, its enhancer element interacts with its promoter to stimulate the activation process. When a gene needs to be turned off or repressed, its specific enhancer is disengaged from the promoter.

DNA methylation refers to the addition of a methyl group to one of the bases of the DNA, cytosine, converting it into a methylcytosine. Presence of methylcytosine at the promoters and enhancers of genes signals the associated gene to be inactive.

DNA methylation is catalyzed by the enzymes called DNA methyltransferases or Dnmts.

Gowher and her team found that these Dnmts are important for releasing enhancers during and determined that a particular enzyme acts as a type of relay switch where the activity of one enzyme turns on the activity of the next, ultimately triggering an enzyme called Dnmt3a to methylate DNA in a specific location.

"The process we discovered provides a way for cells to control the activity of Dnmts at specific enhancers where DNA methylation must be deposited to ensure that genes are turned off when required," said Gowher, whose findings were published in the journal Nucleic Acids Research.

Gowher and her team studied this mechanism for a class of genes named pluripotency genes, which are expressed in . Stem cells replicate rapidly and stay in an undifferentiated state until they get an assignment and become a particular type of cell. During the process of cell differentiation, the pluripotent genes are turned off and DNA methylation occurs.

When external or act on differentiated cells, DNA methylation can be disrupted, triggering a pluripotent state that leads to rapid proliferation of now damaged and cancerous cells.

"Understanding the way that cells regulate these mechanisms of repression may be able to help us understand what is being damaged and what we can watch for that can turn these genes back on," Gowher said.

Gowher said future research will involve looking further upstream in the process, particularly at the signals that can modulate the activity of these enzymes.

Explore further: Two proteins safeguard skin stem cells

More information: Christopher J. Petell et al. An epigenetic switch regulatesDNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation, Nucleic Acids Research (2016). DOI: 10.1093/nar/gkw426

Related Stories

Two proteins safeguard skin stem cells

July 28, 2016

Our skin renews, heals wounds, and regenerates the hair that covers it thanks to a small group of stem cells. These cells continually produce new ones, which appear on the skin surface after a few days. A study led by ICREA ...

Unsilencing silenced genes by CRISPR/Cas9

July 1, 2016

The ability to control gene expression in cells allows scientists to understand gene function and manipulate cell fate. Recently, scientists have developed a revolutionary gene-editing tool, called CRIPSR/Cas9, which employs ...

Genetic guides to epigenetics

February 10, 2015

Dirk Schübeler and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) identify determinants that set epigenetic marks along the genome. The new study, published in Nature, shows that genetic activity ...

Recommended for you

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Oct 13, 2016
Perhaps this will provide clues on how to reduce the fertility rate.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.