Technique could assess historic changes to Antarctic sea ice and glaciers

August 30, 2016, University of Plymouth
Scientists working with the Plymouth University team on sea ice in the Arctic Credit: Simon Belt/Plymouth University

Historic changes to Antarctic sea ice could be unravelled using a new technique pioneered by scientists at Plymouth University.

It could also potentially be used to demonstrate past alterations to glaciers and caused by climatic changes, a study published in Nature Communications suggests.

The new method builds on an existing technique, also developed by Plymouth University over the last 10 years, which identified a means by which scientists could measure changes to in the Arctic.

That has already led scientists to reveal periods when the Arctic was previously ice free during summers, and when sea ice first expanded to is modern extent.

Simon Belt, Professor of Chemistry at Plymouth University and lead author on the study, said: "In addition to allowing us to unlock historical changes to Antarctic sea ice, our new method also has the potential to provide further insights into other critical climatic features that may have changed in the past. Indeed, sea ice around the Antarctic coastline is strongly influenced by nearby glaciers and ice shelves, both of which contribute to increased when they melt. Therefore, our new approach may also permit a much broader spectrum of climatic changes to be unravelled in the future."

The previous technique is based on the presence of IP25 (ice proxy with 25 carbon atoms), a lipid chemical made solely by microalgae that live in the bottom of Arctic sea ice. When the ice melts, the algae and its lipids fall into the sediments which can be recovered, dated and analysed.

IP25 does not exist in the Antarctic, but scientists from Plymouth - working with colleagues from Hanyang University, the Korea Polar Research Institute, the British Antarctic Survey and Isoprime Limited - have discovered a related chemical in the Southern Ocean.

Analysis of surface sediments covering different regions of Antarctica - including the Weddell Sea, the Antarctic Peninsula, the Bellingshausen Sea and the Ross Sea - showed the presence of IPSO25 (ice proxy for the Southern Ocean with 25 carbon atoms) in nearly all cases.

Its source, Berkeleya adeliensis, is a widespread and commonly occurring constituent of microalgae inhabiting Antarctic sea ice, which explains why IPSO25 is so common in the sediments.

The paper concludes: "The identification of IPSO25 in the Antarctic sea ice diatom Berkeleya adeliensis likely ensures that future interpretations of the sedimentary occurrence of this sea ice proxy can be made with greater confidence and in more detail. Thus, in addition to representing a qualitative measure of the past occurrence of Antarctic landfast ice during late spring/summer, our findings indicate that variability in sedimentary IPSO25 potentially provides further insights into changes to ice shelf and glacial melt processes in long-term records."

Explore further: Changes in Antarctic sea ice production due to surrounding ice conditions

More information: Nature Communications, DOI: 10.1038/NCOMMS12655

Related Stories

New Antarctic ice discovery aids future climate predictions

August 16, 2016

A team of British climate scientists comparing today's environment with the warm period before the last ice age has discovered a 65% reduction of Antarctic sea ice around 128,000 years ago. The finding is an important contribution ...

Improved modelling of ice-ocean processes

May 19, 2016

Pine Island Glacier in West Antarctica is currently one of the single biggest contributors to sea-level rise with an estimated volume loss of 1.2mm sea-level equivalent per decade. The loss is caused, at least partly, by ...

Recommended for you

Arctic wintertime sea ice extent is among lowest on record

March 23, 2018

Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center ...

Germany was covered by glaciers 450,000 years ago

March 23, 2018

The timing of the Middle Pleistocene glacial-interglacial cycles and the feedback mechanisms between climatic shifts and earth-surface processes are still poorly understood. This is largely due to the fact that chronological ...

Wood pellets: Renewable, but not carbon neutral

March 22, 2018

A return to firewood is bad for forests and the climate. So reports William Schlesinger, President Emeritus of the Cary Institute of Ecosystem Studies, in an Insights article published today in the journal Science.

The tradeoffs inherent in earthquake early warning systems

March 22, 2018

A team of researchers with the U.S. Geological Survey and the California Institute of Technology has found that modern earthquake early warning (EEW) systems require those interpreting their messages to take into consideration ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.