Did physicists discover a previously unknown fifth force of nature?

August 17, 2016 by Amina Khan, Los Angeles Times
This is the "South Pillar" region of the star-forming region called the Carina Nebula. Like cracking open a watermelon and finding its seeds, the infrared telescope "busted open" this murky cloud to reveal star embryos tucked inside finger-like pillars of thick dust. Credit: NASA

A tiny, unseen force could potentially alter our basic understanding of the universe - if it really exists. Theoretical physicists at UC Irvine say they've found evidence for a fifth fundamental force of nature, carried by a particle that until now has gone totally unnoticed.

If supported by the independent work of other teams, the boson described in a paper in Physical Review Letters (and expanded upon in a study posted to arXiv) could move scientists to rewrite the of .

"If this is true, it would be a really big guide as to what the future would hold as far as the ultimate theory of particle physics," said study coauthor Timothy Tait, a UC Irvine theoretical particle physicist.

There are four known forces that govern the interactions of matter: gravitation, electromagnetism and the strong and weak nuclear forces. A force like gravitation sculpts the universe at the enormous scale of ; the strong and weak nuclear forces prevail in the tiny interactions between . Together, those four forces govern the interactions between all the matter in the universe.

But researchers at UC Irvine say they've found evidence for a fifth force – once carried by a particle that they're calling "boson X." This force is a sort of analogue to electromagnetism - except where electromagnetism acts on electrons and protons (and ignores neutrons), this fifth force works between electrons and neutrons (and ignores protons).

The scientists first got the idea from a paper published by Hungarian researchers who were looking for a "dark photon" (a force carrier for dark matter) and found a strange signal in their data. Could it be a new particle? After analyzing the Hungarians' work and several other teams' experiments, the UC Irvine researchers ruled out the "" explanation but did conclude that the signal could have been caused by a heretofore undescribed boson.

The scientists described the particle in their first paper now appearing in Physical Review Letters. In the follow-up, they fleshed out the idea, showing how (with a small entourage of additional new particles) it could be stitched into the standard model.

"If it's real, it needs to be studied in gory detail," said David McKeen, a theoretical particle physicist at the University of Washington who was not involved in the study.

The standard model, often represented as an unassuming 17-square chart, describes the fundamental subatomic particles that are the building blocks of all matter. It describes humdrum like electrons and protons, and more exotic fare such as muon neutrinos, gluons and quarks, all in terms of three identifying characteristics: mass, charge and spin.

If scientists were to draft a metaphorical map of the known universe, the standard model would be the color-coded legend in the corner - the key that allows them to make sense of the physical world, from the smallest to the largest of scales.

And scientists have been doing their best to break it.

That's because, as neat as it looks, the standard model fails to describe everything in the universe; in fact, it can barely describe a tiny fraction. For example, it can't explain the existence of dark matter, which doesn't interact at all with normal matter but can sculpt the cosmic web of galaxy clusters with its massive gravitational influence. It doesn't explain why dark energy is causing the universe to expand at an increasingly faster rate.

Dark matter makes up nearly 27 percent of the universe's mass-energy density; dark energy makes up more than 68 percent. Normal matter-which can be described fairly accurately by the standard model - is less than 5 percent of that total.

Tait said that their discovery might be a doorway to eventually creating a model that more accurately describes the universe. It could also help demystify mysterious phenomena such as dark matter.

For example, while dark matter responds to gravity over large scales (just as normal matter does), scientists don't know the extent to which it might interact with itself over smaller scales. This new force-carrying boson could provide the answer.

"This could actually be the dark force," Tait said.

But McKeen was more cautious, adding that much more work needs to be done by other groups looking for this particle before any major conclusions can be drawn about whether this exists, and what role it has in explaining such mysterious phenomena as .

"It's not obvious that it helps us with any of these other outstanding problems," he said. "It could have a connection, but it's not obvious to me. But I think it needs to be studied - and then people will understand whether there is or not."

Explore further: Physicists confirm possible discovery of fifth force of nature

Related Stories

Bright sparks shed new light on the dark matter riddle

February 1, 2016

The origin of matter in the universe has puzzled physicists for generations. Today, we know that matter only accounts for 5% of our universe; another 25% is constituted of dark matter. And the remaining 70% is made up of ...

Possible case for fifth force of nature

May 26, 2016

A team of physicists at the University of California has uploaded a paper to the arXiv preprint server in which they suggest that work done by a team in Hungary last year might have revealed the existence of a fifth force ...

Recommended for you

Designing a new material for improved ultrasound

March 22, 2018

Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international ...

Weird superconductor leads double life

March 21, 2018

Until about 50 years ago, all known superconductors were metals. This made sense, because metals have the largest number of loosely bound "carrier" electrons that are free to pair up and flow as electrical current with no ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Aug 17, 2016
That's weird... How can it distinguish between N's 2D+U vs P's D+2U ?? U +2/3 vs D -1/3 ??Could this suggest there's something odd about electrons' - 1 ??
Time to try with deutrons, methinks...
not rated yet Aug 20, 2016
Ah, crap. Now my colleagues are going to throw themselves at this proverbial wall like Napoleon's troops at Waterloo and ignore more concrete studies.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.