A new tool to study plant cell biomechanics

July 5, 2016, Botanical Society of America

We know that within every living plant there are millions of cells working together in a wonderfully complex harmony. But what we don't know is, within each of these cells, what exactly is going on. Scientists have known for some time that cell biomechanics plays a significant role in plant development, but have lacked the tools to advance our knowledge. Researchers from the University of Vermont have developed a method that promises to shed light on single cell biomechanics—by capturing individual cells in microscopic gel beads.

The beads are no wider than a strand of hair, a mere sixty micrometers, but they allow researchers to manipulate the external environment of a single cell and study how the cell responds. They are made using agarose, a material that maintains a fluid state at warm temperatures and hardens as it cools.

"We're enthusiastic about this method being a useful tool for researchers interested in mechanical signaling at the cellular level," says Matthew S. Grasso, a graduate student working in Dr. Philip Lintilhac's laboratory in the Plant Biology Department. The new microbead protocol is available in a recent issue of Applications in Plant Sciences.

The first step in creating the microbeads is to prepare the protoplasts from . For this study, Grasso used a tobacco cell line. Within a developed piece of plant tissue the cells would look much like a grid, with the grid lines being the cell walls. To get a close look at the mechanics within each cell, Grasso first strips the cells of their cell walls, creating a suspension of free-floating, membrane-enclosed plant protoplasts.

"In the plant body, cells are subject to the mechanical forces generated by their own cell walls, as well as by the cells that surround them. Using individual protoplasts helps control these variables, making it easier to interpret how cells respond to a given mechanical stimulus," says Grasso.

Production of uniformly sized microdroplets at the junction of the droplet chip. Credit: Matthew S. Grasso, and Philip M. Lintilhac. Microbead encapsulation of living plant protoplasts: A new tool for the handling of single plant cells. Applications in Plant Sciences 4(5): 1500140. doi:10.3732/apps.1500140

Cells are constantly communicating with each other via signals that pass through cell walls. Recent studies have uncovered a bit about these chemical signals, but the micromechanics occurring within each cell, and the complex relationship between a cell and its , are yet to be understood fully.

To make the beads, Grasso assembled a multi-column microfluidic droplet system. In the system, warm liquid agarose from one column meets the plant cell suspension from another column. After the two fluids merge into one, microdroplets are generated, and gently fall into a pool of cooled mineral oil where they solidify (see Video). The system can generate around 130 beads per second, with 25% successfully carrying a protoplast.

"Unraveling the nuances of the droplet microfluidics system took some time. For a while, it was confusing as to what the different variables were, making it difficult to control them and achieve consistency," says Grasso.

Dr. Rachael Oldinski in the Mechanical Engineering Department at the University of Vermont provided assistance and specialized laboratory equipment for the development of the bead protocol.

"Dr. Oldinski has helped explain different aspects of forming hydrogel microbeads, as well as some variables of the droplet system that should be considered. Her knowledge of stimuli-responsive hydrogels may help us manipulate the micromechanics of in a unique and highly controllable way," says Grasso.

Within twenty-four hours of bead formation, the membrane-enclosed plant protoplasts regenerate their cell walls. From there, the cells expand and multiply, bursting the beads open. Observing this regenerative ability of the under highly controlled conditions could reveal unprecedented knowledge of cellular function.

Explore further: Plant cell wall development revealed in space and time for the first time

More information: Matthew S. Grasso et al, Microbead Encapsulation of Living Plant Protoplasts: A New Tool for the Handling of Single Plant Cells, Applications in Plant Sciences (2016). DOI: 10.3732/apps.1500140

Related Stories

Biologists find how plants reconstitute stem cells

May 19, 2016

Stem cells are typically thought to have the intrinsic ability to generate or replace specialized cells. However, a team of biologists at NYU showed that regenerating plants can naturally reconstitute their stem cells from ...

Lasers carve the path to tissue engineering

June 23, 2016

Future medicine is bound to include extensive tissue-engineering technologies such as organs-on-chips and organoids - miniature organs grown from stem cells. But all this is predicated on a simple yet challenging task: controlling ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.