Improved nanoscale patterning using aniodine or xenon difluoride gas

July 18, 2016
Improved nanoscale patterning using aniodine or xenon difluoride gas
Adding aniodine or xenon difluoride gas aids nanoscale ion-beam etching of hybrid-perovskite materials. Credit: KAUST

A technique developed by scientists at King Abdullah University of Science and Technology (KAUST), Saudi Arabia, has made more controlled fabrication of optoelectronic devices produced from a hybrid of organic and inorganic materials possible.

Solar cells that are based on a perovskite material made by combining organic methylammonium ions with inorganic lead atoms plus a halide (chlorine, bromine or iodine) atom have already shown and are economical to produce.

A drawback, however, is that is that the organic component is sensitive to the solvents and that are often involved in device fabrication.

"Perovskite is a relatively new material, so fabrication technology is not well-developed," said KAUST Professor of Electrical Engineering Boon Ooi. "Existing approaches are at the microscale and inhomogeneous."

Ooi and his colleagues from the University's Photonics Laboratory, the Imaging & Characterization Core Lab and the Solar & Photovoltaics Engineering Research Center have demonstrated a technique that can directly pattern perovskites with features smaller than one micrometer with little surface damage.

Ooi's team use focused-ion beam etching, a technique that involved firing gallium ions at CH3NH3PbBr3. The energy of these particles colliding with the sample caused the perovskite material to be ejected from the surface. To enhance this process, the team injected either gaseous xenon difluoride or iodine into the sample chamber during the etching process. These reacted with the perovskite to create volatile etch-products that were more easily removed.

By comparing samples etched with and without the injected gas, the team showed that the introduction of iodine almost doubled the etching rate over that with the gallium ions alone. The gas also made it easier to control the process, a key to making the devices reproducible.

The researchers also showed that the gas-assisted process resulted in less damage to the surface, as shown by the better optical properties of the material processed with both the iodine and xenon difluoride.

The researchers used their technique to create a grating, a series of equally spaced trenches. They were able to create trenches with a width as small as 120 nanometers separated by only 137 nanometers. Features of this size are important as they are smaller than the wavelength of the visible light emitted by these materials and thus enable construction of nanostructures that can manipulate light for better device performance.

"We are planning to implement the patterning directly on devices such as laser and to enhance their performance," noted Ooi.

Explore further: Depletion and enrichment of chlorine in perovskites observed

More information: Mohd S. Alias et al. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications, The Journal of Physical Chemistry Letters (2016). DOI: 10.1021/acs.jpclett.5b02558

Related Stories

Depletion and enrichment of chlorine in perovskites observed

July 9, 2015

X-ray spectroscopy at BESSY II reveals inhomogenous distribution of chlorine in a special class of perovskite materials. The discovery could help to enhance efficiencies of perovskite thin film solar cells by controlled processing ...

Recommended for you

Researchers report new technique for de-icing surfaces

September 21, 2017

Scientists and engineers have been waging a quiet but determined battle against the build-up of ice on infrastructure. A thin coating of ice on solar panels can wreak havoc with their ability to generate electricity. Thin ...

Precisely defined polymer chains now a reality

September 21, 2017

Manufactured polymers are ubiquitous in the market. These large molecules are used for synthetic clothing, rubbers and glues, and anything made of plastic. However, the material properties exhibited by man-made polymers rely ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.