Researchers develop novel way of deriving hydrogen from grass using just sunlight and a cheap catalyst

July 21, 2016 by Michael Bishop, Cardiff University
grass

Garden grass could become a source of cheap and clean renewable energy, scientists have claimed.

A team of UK researchers, including experts from Cardiff University's Cardiff Catalysis Institute, have shown that significant amounts of can be unlocked from fescue grass with the help of sunlight and a cheap catalyst.

It is the first time that this method has been demonstrated and could potentially lead to a sustainable way of producing hydrogen, which has enormous potential in the renewable energy industry due to its high energy content and the fact that it does not release toxic or greenhouse gases when it is burnt.

Co-author of the study Professor Michael Bowker, from the Cardiff Catalysis Institute, said: "This really is a green source of energy.

"Hydrogen is seen as an important future energy carrier as the world moves from fossil fuels to renewable feedstocks, and our research has shown that even garden grass could be a good way of getting hold of it."

The team, which also includes researchers from Queen's University Belfast, have published their findings in the Royal Society journal Proceedings A.

Hydrogen is contained in enormous quantities all over in the world in water, hydrocarbons and other organic matter.

Up until now, the challenge for researchers has been devising ways of unlocking hydrogen from these sources in a cheap, efficient and sustainable way.

A promising source of hydrogen is the organic compound , which is a key component of plants and the most abundant biopolymer on Earth.

In their study, the team investigated the possibility of converting cellulose into hydrogen using sunlight and a simple catalyst—a substance which speeds up a chemical reaction without getting used up.

This process is called photoreforming or photocatalysis and involves the sunlight activating the catalyst which then gets to work on converting cellulose and water into hydrogen. The researchers studied the effectiveness of three metal-based catalysts—Palladium, Gold and Nickel.

Nickel was of particular interest to the researchers, from a practical point of view, as it is a much more earth-abundant metal than the precious metals, and is more economical.

In the first round of experiments, the researchers combined the three catalysts with cellulose in a round bottom flask and subjected the mixture to light from a desk lamp. At 30 minutes intervals the researchers collected gas samples from the mixture and analysed it to see how much hydrogen was being produced.

To test the practical applications of this reaction, the repeated the experiment with fescue grass, which was obtained from a domestic garden.

Professor Michael Bowker continued: "Up until recently, the production of hydrogen from cellulose by means of photocatalysis has not been extensively studied.

"Our results show that significant amounts of hydrogen can be produced using this method with the help of a bit of sunlight and a cheap catalyst.

"Furthermore, we've demonstrated the effectiveness of the process using real grass taken from a garden. To the best of our knowledge, this is the first time that this kind of raw biomass has been used to produce hydrogen in this way. This is significant as it avoids the need to separate and purify cellulose from a sample, which can be both arduous and costly."

Explore further: Scientists made it cheaper to produce hydrogen from water

Related Stories

Carbon leads the way in clean energy

March 22, 2016

Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.

New catalyst found for clean energy fuel

May 30, 2016

A team of UConn chemists led by professors Steven Suib and James Rusling has developed a new material that could make hydrogen capture more commercially viable and provide a key element for a new generation of cheaper, light-weight ...

Recommended for you

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

The early bits of life

January 18, 2018

How can life originate before DNA and genes? One possibility is that there are natural processes that lead to the organisation of simple physical objects such as small microcapsules that undergo rudimentary forms of interaction, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.