Chemists invent new supercapacitor materials

June 13, 2016, University of Amsterdam
Chemists invent new supercapacitor materials
Credit: University of Amsterdam

Dr David Eisenberg and Prof. Gadi Rothenberg of the University of Amsterdam's Van 't Hoff Institute for Molecular Sciences have invented a new type of supercapacitor material with a host of potential applications in electronics, transportation and energy storage devices. The UvA has filed a patent application on this invention.

Eisenberg and Rothenberg discovered the supercapacitor material during sideline experiments as part of the Fuel Cells project of the Research Priority Area Sustainable Chemistry. Originally, the materials were developed as solid catalytic electrodes for fuel cells. By modifying the surface of these materials the scientists created a highly porous yet well-structured compound, with ample sites for fast redox reactions, inspiring the successful testing for supercapacitance.

The new material combines several practical advantages: It is light, cheap, and non-toxic, and it can be prepared easily on a large scale. This last aspect is crucial for industrial applications, according to Eisenberg: 'Companies making electronic devices look for low-cost, highly reproducible materials with a low environmental impact. The literature abounds with reports of high-performance electronic materials, but these will only be applied if they can be made cheaply in large quantities'.

Supercapacitors are that combine the properties of capacitors and batteries. Batteries have a high (they can store large amounts of energy), but their is low (they charge and discharge slowly). Conversely, capacitors enjoy a high power density (they can take and deliver energy quickly) but their energy density is low.

A battery uses its whole bulk for charge storage, while a capacitor uses its surface. Supercapacitors use charge separation through fast ion adsorption, and very fast redox reactions with surface-bound molecules. They have a higher density than regular electrolytic capacitors, and also a much higher power density than batteries.

Typically, supercapacitors are used in situations requiring many rapid charge/discharge cycles. Examples include protecting electronic circuits against power surges, regenerative breaking in cars and elevators, and burst-mode power delivery in camera flashes.

Explore further: Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy

Related Stories

Recommended for you

Scientists discover new 'architecture' in corn

January 21, 2019

New research on the U.S.'s most economically important agricultural plant—corn—has revealed a different internal structure of the plant than previously thought, which can help optimize how corn is converted into ethanol.

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.