Autoignition model designed for efficient, accurate engine simulations

May 12, 2016, Sandia National Laboratories
Sandia National Laboratories postdoctoral researcher Layal Hakim, center, working with Joe Oefelein, left, and Guilhem Lacaze, designed and implemented an optimized chemical model that describes autoignition of a diesel fuel surrogate. Credit: Randy Wong

Researchers at Sandia National Laboratories have developed a model for how diesel engines autoignite that should lead to increased engine efficiency and a better understanding of how pollutants form.

Sandia postdoctoral researcher Layal Hakim, working with mentors and Sandia principal investigators Guilhem Lacaze and Joe Oefelein, designed and implemented an optimized chemical model that describes autoignition of a diesel fuel surrogate and quantifies the degree of uncertainty in the model.

Understanding the fundamental processes that produce autoignition can lead to designs that improve and reduce emissions by optimizing the timing and location of ignition. This model will serve as a key component of simulations that provide new insights into the effect of high-pressure liquid injection, fuel chemistry and turbulent mixing on diesel combustion efficiency and emissions, Hakim said.

The research was published in April in the SAE International Journal of Fuels and Lubricants in a paper titled, "Large Eddy Simulation of Autoignition Transients in a Model Diesel Injector Configuration."

"Environmental concerns have induced a strong need in developing more efficient and cleaner engines and fuels," Hakim said. "One current bottleneck is the understanding of the oxidation of large hydrocarbon fuels over a wide range of operating conditions."

Because are composed of thousands of different chemical species, detailed kinetic models typically aren't practical for simulations. Thus, surrogate fuels with just a few components are used to approximate the physical and chemical properties of real fuels.

"We use n-dodecane in our simulation as a surrogate fuel to mimic diesel. But while detailed mechanisms are an active research topic to model and understand the chemical behavior of such surrogates, we still need a more affordable representation of the subtleties of the n-dodecane chemistry when we study the key physics that lies in the combination of mixing and chemistry. This is where our chemical model has proven its usefulness," Hakim said. "The physical processes in diesel jet injection and ignition are still not fully understood, and experiments, while invaluable, can only provide a limited level of detail. Therefore, numerical simulations are good candidates to reveal missing information."

The group also collaborated with Sandia researchers Mohammad Khalil, Khachik Sargsyan and Habib Najm, drawing on their expertise in determining the degree of uncertainty in the model.

"Quantifying the impact of uncertainties introduced by such a chemical approximation on the simulation predictions is crucial for providing meaningful data," Hakim said.

The lack of accurate models representing the physics of injection, vaporization, turbulent mixing and ignition is a major barrier to the design of new engines, she added. Simulations complement key experiments by providing complementary, high-resolution benchmark data at the same conditions to test and improve engineering approaches that industry uses. Hakim said the spatial and temporal fidelity of the Sandia team's calculations provide access to full broadband three-dimensional characteristics of injection, ignition and combustion.

Studies such as these contribute to the entire research community through Sandia's Engine Combustion Network. The team hopes to perform joint comparisons that use data generated through the model to understand the accuracy of a range of models used in engineering codes.

This published research contributes to the mission of Sandia's Combustion Research Facility where simulations complement experiments and bring key insights to improve real engines.

Explore further: The complex chemistry of combustion

More information: Layal Hakim et al. Large Eddy Simulation of Autoignition Transients in a Model Diesel Injector Configuration, SAE International Journal of Fuels and Lubricants (2016). DOI: 10.4271/2016-01-0872

Related Stories

Labs to investigate new approach to engines

February 16, 2016

The U.S. Department of Energy's (DOE's) Argonne National Laboratory is working with Achates Power, Inc., and Delphi Automotive to develop an innovative new engine that could yield efficiency gains of up to 50 percent over ...

Simulating turbulent combustion speeds design

September 22, 2011

Air and fuel mix violently during turbulent combustion. The ferocious mixing needed to ignite fuel and sustain its burning is governed by the same fluid dynamics equations that depict smoke swirling lazily from a chimney. ...

Recommended for you

A novel approach of improving battery performance

September 18, 2018

New technological developments by UNIST researchers promise to significantly boost the performance of lithium metal batteries in promising research for the next-generation of rechargeable batteries. The study also validates ...

Germany rolls out world's first hydrogen train

September 17, 2018

Germany on Monday rolled out the world's first hydrogen-powered train, signalling the start of a push to challenge the might of polluting diesel trains with costlier but more eco-friendly technology.

Technology streamlines computational science projects

September 15, 2018

Since designing and launching a specialized workflow management system in 2010, a research team from the US Department of Energy's Oak Ridge National Laboratory has continuously updated the technology to help computational ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.