Cell fusion discovery could improve agricultural production

April 22, 2016, Institute of Transformative Bio-Molecules (ITbM), Nagoya University
Cell-to-cell fusion in plants is rarely seen due to their relatively tough cell walls, according to the researchers. Credit: pakhnyushchyy

An international research team has observed cell fusion in flowering plants for the first time in more than a century. The discovery demystifies how plants prevent the attraction of excessive pollen tubes after a successful fertilisation.

Reproduction of occurs within a plant's ovule by the fertilisation of both the egg and a larger central cell by two . Sperm cells are carried into the ovule by a pollen tube and discharged into one of two "synergid" cells located next to the . During this process, the synergid cell dies and degenerates, and the sperm cells migrate to the egg and central cell. Once fertilised, the egg cell becomes the embryo while the central cell becomes the endosperm that nourishes the embryo.

Earlier research found that the role of synergid cells is to attract or prevent from reaching a plant's ovule. If the initial fertilisation fails, the second synergid cell attracts a new pollen tube for another attempt of fertilisation. In the case of a successful fertilisation, the second synergid cell – also known as the persistent synergid cell – is inactivated to avoid multiple pollen tubes entering the ovule. This prevents more than one sperm cell from fertilising the same egg, creating a genetic imbalance. However, the mechanism behind synergid inactivation remained unknown.

Led by Daisuke Maruyama of Nagoya University's Institute of Transformative Bio-Molecules, a team of international researchers from Singapore, Germany, Saudi Arabia and Austria has discovered that, following fertilisation, the persistent synergid cell fuses with the endosperm, triggering its inactivation.

Cell-to-cell fusion in is rarely seen due to their relatively tough cell walls, according to the researchers. Their study is only the third report of plant cell fusion being observed and the first observation since the initial reports in the late 1800s.

Using live imaging techniques, the team found that , which is induced by the fertilisation of the central cell, rapidly dilutes the contents of the persistent synergid cell. Meanwhile, fertilisation of the egg cell activates its "ethylene signalling" pathway, which degrades the nucleus of the persistent synergid cell. As a result, the persistent synergid cell completely loses its ability to attract pollen tubes.

Dr Maruyama says their discovery could ultimately be useful for improving the success rate of plant fertilisation in agricultural production, for example. Optimising the fusion of synergid cells with endosperm, he explains, would reduce the chance for multiple pollen tubes to be accidentally attracted following a successful .

Next on the team's agenda is to explore molecules that are involved in the fusion of synergid and endosperm.

Explore further: Cell fusion 'eats up' the 'attractive cell' in flowering plants

Related Stories

Calcium and reproduction go together

August 22, 2014

Everyone's heard of the birds and the bees. But that old expression leaves out the flowers that are being fertilized. The fertilization process for flowering plants is particularly complex and requires extensive communication ...

Recommended for you

Fungus senses gravity using gene borrowed from bacteria

April 24, 2018

The pin mold fungus Phycomyces blakesleeanus forms a dense forest of vertically growing fruiting bodies, but how does it know which way is "up"? New research publishing 24 April in the open access journal PLOS Biology, from ...

Team discovers a new take on early evolution of photosynthesis

April 24, 2018

A team of scientists from Arizona State University's School of Molecular Sciences has begun re-thinking the evolutionary history of photochemical reaction centers (RCs). Their analysis was recently published online in Photosynthesis ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.